首页> 外文OA文献 >An empirical method for calculating melt compositions produced beneath mid-ocean ridges : application for axis and off-axis (seamounts) melting.
【2h】

An empirical method for calculating melt compositions produced beneath mid-ocean ridges : application for axis and off-axis (seamounts) melting.

机译:一种计算中洋脊下方产生的熔体成分的经验方法:轴和离轴(海山)熔融的应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10–20% partial melting at initial pressures (P0) of 12–21 kbar. Our primary MORB melts have MgO = 10–12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°–60°C over distances of 30–50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (−100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45′ Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and an adiabatic temperature gradient in the sub axial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.
机译:我们提出了一种新的计算初级熔体的主要元素组成的新方法,该熔体是父母亲至中海脊玄武岩(MORB)。这个模型是基于Jaques and Green(1980),Falloon等人的实验数据。 (1988),以及Falloon和Green(1987,1988)就是理想的选择。我们的方法是经验性的,并采用了实验中的固液分配系数(Di)。我们凭经验确定Di =ƒ(P,F),并使用它来计算通过减压诱导的沿着绝热体的熔化(柱熔化)产生的熔体成分。结果表明,在初始压力​​(P0)为12-21 kbar时,大多数MORB可以通过10-20%的部分熔化来生成。我们的主要MORB熔体的MgO = 10–12 wt%。我们在低压下将其分馏至MgO含量为8.0 wt%,以便解释天然MORB液体。该模型使我们能够计算天然MORB熔体的Po,Pƒ,To,Tƒ和F。我们应用该模型解释快速脊线(东太平洋上升(EPR)8°N至14°N),慢脊线(大西洋中脊(MAR)在26°S)下的MORB组成和地幔上升模式,以及EPR(Lament海山链)附近的海山。我们在EPR的横轴和沿轴的30–50 km距离内发现地幔温度差异高达50°–60°C。我们认为,这是由于在弱导电(相对于绝热)温度梯度中向上的地幔流动所致。我们建议,由于板块的分离,EPR由上升流的一个宽泛区域(-100 km)提供,但其中心核心具有较快的浮力。 Siqueiros变换和11°45′重叠扩展中心(OSC)之间的沿轴向热穹顶可能代表了这种上升趋势。但是,总体上,地幔温度,地形和EPR的分割模式之间的相关性很差。对于Lament海山,我们发现Po和F的横轴有规律的变化,这表明融化带夹在轴外。这一观察结果支持了EPR的观点,即广泛的上升流给了EPR动力,而上升势头却逐渐减小。与EPR轴相反,地幔温度与MAR的地形有很好的相关性,并且偏移处的熔融较少。该数据与偏移下的上升流较弱以及远离偏移的亚轴向地幔中的绝热温度梯度一致。 26°S时的MAR表现出Klein和Langmuir(1989)的所谓局部趋势。我们的模型表明局部趋势不能仅由于柱内熔化过程引起。局部趋势在遗传上似乎与缓慢扩散的山脊有关,我们认为这是由于多个独立域的熔化所致,这些区域在浮力集中的地幔流供给的段中,初始和最终熔融压力不同。

著录项

  • 作者

    Niu Y.L.; Batiza R.;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号