首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction
【2h】

Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction

机译:大洋中脊下方的粒度动力学:对渗透率和熔体提取的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise.Key Points: class="unordered" style="list-style-type:disc">The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis class="kwd-title">Keywords: mid-ocean ridge, permeability, grain size, simulation class="head no_bottom_margin" id="__sec2title">IntroductionMid-ocean ridges (MOR) are a fundamental feature of terrestrial plate tectonics and the simplest of the main tectono-volcanic systems. The asthenospheric dynamics beneath and near MORs are driven mostly by spreading of lithospheric plates, which is a consequence of far-field tectonic stresses (e.g., slab pull). The passive asthenospheric flow caused by imposed plate spreading is dominantly controlled by the material properties of the asthenosphere and, in particular, its viscosity. Furthermore, asthenospheric flow beneath a ridge causes melting; this melt segregates to fuel MOR volcanism and production of oceanic crust. Melt segregation is controlled by the permeability of the partially molten asthenosphere. Both mantle permeability and viscosity are sensitive to mantle grain size, a key property that has received little consideration in most previous models.Grain size is a fundamental structural property of a polycrystalline material that can vary in response to conditions including stress, strain rate, temperature, and the presence of melt. Grain size growth and reduction are assumed to be consequences of independent and simultaneous processes [e.g., Austin and Evans, ; Hall and Parmentier, ]. In situations where these rates are balanced, a steady state grain size can be established. However, predictions of grain dynamics are complicated by the nonlinear relationships between the grain size, viscosity, and stress, which can lead to reinforcing feedbacks.Ductile strain localization is a well-studied example of a grain-size feedback [Poirier, ; Jessell and Lister, ; Drury et al., ; Jin et al., ; Braun et al., ; Montési and Hirth, ; Bercovici and Ricard, ]. It occurs when the viscosity is positively correlated with grain size. Deformational work reduces the local grain size, which in turn reduces the viscosity. A decrease in viscosity allows the local strain rate to increase, which further reduces the local grain size. This feedback mechanism is the basis for an instability that can emerge from an inhomogeneous initial viscosity and/or grain-size field and lead to strain localization. In the simple form discussed here, it does not rely on the presence of fluid or melt. However, strain localization in the presence of melt may lead to the generation of melt bands, which can lead to additional feedbacks on the localization process [Katz et al., ; Rudge and Bercovici, ].A second feedback in which grain size plays a role is associated with reactive flow of magma through a permeabile mantle matrix [Kelemen et al., ; Aharonov et al., ; King et al., ]. Magma rising under buoyancy is undersaturated in SiO2 and hence dissolves pyroxene and precipitates olivine; this process leaves a dunite residue as evidence of extensive reaction [Morgan and Liang, ,]. If pyroxene is a pinning phase that limits the growth of olivine grains [Evans et al., href="#b16" rid="b16" class=" bibr popnode">2001], then reactive dissolution may enable more rapid growth of olivine. Since permeability depends on the square of grain size [e.g., von Bargen and Waff, href="#b45" rid="b45" class=" bibr popnode">1986], this would increase permeability, strengthening channelization and reactive dissolution, and enabling further olivine grain growth [Braun, href="#b10" rid="b10" class=" bibr popnode">2004].These two examples of feedback mechanisms emphasize the importance of grain-size variations in time and space for controlling the dynamics of mantle processes. Unfortunately, there are no direct measurements of in situ grain size in the Earth's mantle. Mantle xenoliths [Twiss, href="#b44" rid="b44" class=" bibr popnode">1977; Ave Lallemant et al., href="#b4" rid="b4" class=" bibr popnode">1980] and ophiolites [Braun, href="#b10" rid="b10" class=" bibr popnode">2004] can provide estimates for the range of grain sizes in the upper mantle, however, such studies provide no information about spatial variations in grain size on the scale of mantle dynamics beneath a ridge axis. Moreover, it is difficult to assess how much these samples have evolved during emplacment, and thus how representative the recorded grain sizes are of normal mantle conditions. Similarly seismic attenuation, which is a strong function of grain size [Karato, href="#b27" rid="b27" class=" bibr popnode">2003], typically cannot resolve grain-size variations on the length-scales that are important for controlling ridge dynamics.An alternative approach for assessing grain-size variations in the mantle is to couple numerical models with experimentally derived flow laws and grain-size evolution models. Behn et al. [href="#b7" rid="b7" class=" bibr popnode">2009] used this approach to estimate grain size as a function of depth in the oceanic upper mantle. As part of their study they compared the models of Hall and Parmentier [href="#b19" rid="b19" class=" bibr popnode">2003] and Austin and Evans [href="#b3" rid="b3" class=" bibr popnode">2007] with experimental data for deformed wet and dry olivine. They found that the Austin and Evans [href="#b3" rid="b3" class=" bibr popnode">2007] model provided closer agreement with the laboratory experiments. Behn et al. [href="#b7" rid="b7" class=" bibr popnode">2009] modeled grain size in a one-dimensional vertical column with a composite rheology of dislocation and diffusion creep. The steady state grain size was calculated under the assumption that a constant fraction of mechanical work acts to reduce grain size. They found that the mean grain-size reaches a minimum of 15–20 mm at a depth of approximately 150 km. They also found that the structure of mean grain size is a good fit to the low seismic shear-wave velocity zone in the upper oceanic mantle. They predicted that dislocation creep is the dominant deformation mechanism for all depths of the upper mantle. However, Behn et al. [href="#b7" rid="b7" class=" bibr popnode">2009] did not calculate the influence of mantle corner flow, and so the near-ridge strain-rate structure was oversimplified. Moreover, the assumption of a constant fraction of mechanical work reducing the mean grain size, as opposed to a fraction of dislocation work [Austin and Evans, href="#b3" rid="b3" class=" bibr popnode">2007], removed a potentially important coupling between the deformation mechanism and mean grain size.The goal of this study is to characterize the variations in grain-size beneath a mid-ocean ridge, with particular focus upon the implications for the permeability structure beneath the ridge. The permeability structure is an important control on melt migration and has been implicated as a key component in focusing of partial melt toward the ridge axis. In such focusing models [e.g., Sparks and Parmentier, href="#b42" rid="b42" class=" bibr popnode">1991; Spiegelman, href="#b43" rid="b43" class=" bibr popnode">1993; Ghods and Arkani-Hamed, href="#b18" rid="b18" class=" bibr popnode">2000; Hebert and Montési, href="#b21" rid="b21" class=" bibr popnode">2010], the cold thermal boundary of the lithosphere gives rise to a permeability barrier due to freezing of melt within the pore space of the mantle. The buoyancy-driven vertical transport of melt is inhibited beneath this barrier by a compaction pressure gradient that balances melt buoyancy. If the thermal boundary were perpendicular to the gravity vector, then melt would be trapped at this boundary. However, the thermal boundary layer is inclined toward the ridge axis, such that a component of the compaction pressure gradient, which acts normal to the permeability barrier, drives melt toward the ridge axis. However, permeability-based models of melt focusing have yet to consider the contribution of spatial variations in grain size beneath the ridge axis. This leaves open the question whether a gradient in grain size can act as a permeability barrier and, if so, what effect would this have on melt transport beneath a mid-ocean ridge.In this study we construct a two-dimensional, single phase model for the steady state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. Our choice of rheology allows for a nonlinear coupling between the mean grain size and strain rate; the mean grain size is reduced by dislocation creep and grain boundary sliding, which then affects the strain rate of diffusion creep and grain boundary sliding. The mean grain size is calculated using the paleowattmeter model [Austin and Evans, href="#b3" rid="b3" class=" bibr popnode">2007]. The dynamics of the model are described by Stokes flow and the rheology is taken from experimental flow laws.The manuscript is organized as follows. We develop the model in section 2. First the standard Stokes flow dynamics are briefly outlined, then the composite rheology and mean grain-size evolution model are presented in detail. Section 2 concludes by examining the sensitivity of the composite rheology to variations in experimentally determined parameters for two different grain boundary sliding parameterizations. In section 3, we present a reference case for grain-size dynamics beneath a mid-ocean ridge and explore the sensitivity of the model to grain boundary sliding parameters, water concentration, and parameter perturbations within the mean grain-size evolution equation. In section 4, we investigate the influence of mean grain size upon the permeability structure for an ultra-slow, slow, and fast spreading-rate ridge. The permeability structure due to mean grain size is then interpreted in the context of melt transport.
机译:粒度是控制地幔粘度和渗透率的重要控制因素,但很难或不可能就地测量。我们为中洋脊下方的稳态平均晶粒尺寸构建了二维单相模型。地幔流变学是扩散蠕变,位错蠕变,位错适应晶界滑动和塑性应力限制器的综合模型。平均晶粒度是根据Austin和Evans(2007)的古功率计关系计算的。我们调查了我们的模型对谷物生长指数,潜在温度,铺展速率和地幔水化作用全球变化的敏感性。我们根据其对熔体传输的渗透性来解释平均晶粒尺寸场。由于平均晶粒尺寸而导致的渗透性结构可以近似为低渗透性区域下方的高渗透性区域。高磁导率区域和低磁导率区域之间的过渡发生在一个朝向山脊轴陡峭倾斜的边界上。我们假设,由平均晶粒尺寸的变化性产生的这种渗透性结构可能会将熔融物聚焦在山脊轴线上,类似于Sparks and Parmentier(1991)型聚焦。反过来,这种聚焦可能会限制通过地震或大地电磁测量观测到大量熔体含量的区域。通过晶粒大小的渗透性结构进行熔体聚焦的这种解释与东太平洋上升带下的软流圈的MT观测是一致的。要点: class =“ unordered” style =“ list-style-type:disc”> <! -list-behavior =无序前缀-word = mark-type = disc max-label-size = 0-> MORs下面的晶粒尺寸字段可以变化一个数量级 晶粒尺寸场会影响​​软流圈的流变性和渗透性 晶粒尺寸场可能会将熔融物集中在脊轴上 class =“ kwd-title”>关键字:中洋脊,渗透率,晶粒大小,模拟 class =“ head no_bottom_margin” id =“ __ sec2title”>简介中洋脊(MOR)是陆相板块构造的基本特征和最简单的主要构造-火山系统。 MORs下方和附近的软流圈动力学主要是由岩石圈板块的扩散来驱动的,这是远场构造应力(例如平板拉力)的结果。由强加的板扩散引起的被动软流圈流动主要由软流圈的材料特性,尤其是其粘性控制。此外,脊下面的软流圈流动会导致融化;这些熔体被隔离,以推动MOR火山活动和大洋地壳的产生。熔体偏析受部分熔融软流圈的渗透性控制。地幔渗透率和黏度都对地幔晶粒度敏感,这是以前大多数模型中很少考虑的关键特性。晶粒度是多晶材料的基本结构性质,可随应力,应变率,温度等条件而变化以及融化的存在。晶粒尺寸的增加和减小被认为是独立且同时进行的过程的结果[例如,Austin和Evans, ; Hall和Parmentier, ]。在这些速率平衡的情况下,可以建立稳态晶粒尺寸。然而,晶粒尺寸,粘度和应力之间的非线性关系使晶粒动力学的预测变得复杂,这会导致增强的反馈。延性应变局部化是晶粒尺寸反馈的充分研究的例子[Poirier, ;杰西尔和李斯特, ; Drury等, ; Jin等, ; Braun等人, ; Montési和Hirth, ; Bercovici和Ricard, ]。当粘度与粒度呈正相关时,会发生这种情况。变形工作会减小局部晶粒尺寸,从而降低粘度。粘度的降低使局部应变率增加,这进一步减小了局部晶粒尺寸。这种反馈机制是不稳定的基础,这种不稳定可能从不均匀的初始粘度和/或晶粒尺寸场出现,并导致应变局部化。在这里讨论的简单形式中,它不依赖于流体或熔体的存在。但是,在熔体存在的情况下应变局部化可能导致熔体带的产生,这可能导致对局部化过程的其他反馈[Katz等人, ; Rudge和Bercovici, ]。第二个反馈,其中晶粒大小起作用,与岩浆通过渗透性地幔基质的反应流有关[Kelemen et al。, ; Aharonov等, ; King等, ]。在浮力作用下上升的岩浆在SiO2中不饱和,因此溶解了辉石并沉淀出橄榄石。这个过程留下了榴辉石残留物,作为广泛反应的证据[Morgan and Liang, ]。如果辉石是限制橄榄石晶粒生长的固定相[Evans等, href="#b16" rid="b16" class=" bibr popnode"> 2001 ],那么反应性溶解可以使橄榄石更快地生长。由于渗透率取决于晶粒尺寸的平方[例如, von Bargen和Waff ,所以 href="#b45" rid="b45" class=" bibr popnode"> 1986 ],这将增加渗透性,增强通道化作用和反应性溶解,并使橄榄石晶粒进一步生长[ Braun href =“#b10” rid =“ b10 “ class =” bibr popnode“> 2004 ]。这两个反馈机制示例都强调了时间和空间粒度变化对控制地幔过程动力学的重要性。不幸的是,没有直接测量地球地幔中原位晶粒大小的方法。披风xenoliths [Twiss, href="#b44" rid="b44" class=" bibr popnode"> 1977 ; Ave Lallemant等人。, href="#b4" rid="b4" class=" bibr popnode"> 1980 ]和蛇绿岩[< em> Braun href="#b10" rid="b10" class=" bibr popnode"> 2004 ]可以提供晶粒尺寸范围的估算值然而,在上地幔中,这样的研究没有提供关于脊轴以下的地幔动力学尺度上晶粒尺寸空间变化的信息。此外,很难评估在包埋过程中这些样品已经演化了多少,因此很难评估所记录的晶粒大小在正常地幔条件下的表现。同样,地震衰减是晶粒大小的强大函数[ Karato href="#b27" rid="b27" class=" bibr popnode"> 2003 ],通常无法解析对控制脊动力学非常重要的长度尺度上的晶粒尺寸变化。评估地幔中晶粒尺寸变化的另一种方法是将数值模型与实验得出的流动规律和晶粒耦合大小的演化模型。 Behn等。 [ href="#b7" rid="b7" class=" bibr popnode"> 2009 ]使用这种方法来估算作为海洋上层深度的函数的晶粒尺寸地幔。作为研究的一部分,他们比较了 Hall和Parmentier 的模型[ href="#b19" rid="b19" class=" bibr popnode"> 2003 < / sup>]和 Austin and Evans [ href="#b3" rid="b3" class=" bibr popnode"> 2007 ]与变形的干湿橄榄石的实验数据。他们发现提供了 Austin and Evans [ href="#b3" rid="b3" class=" bibr popnode"> 2007 ]模型与实验室实验更加接近。 Behn等。 [ href="#b7" rid="b7" class=" bibr popnode"> 2009 ]在一维垂直列中模拟了具有位错复合流变学的晶粒尺寸和扩散蠕变。稳态晶粒尺寸是在一定比例的机械功用于减小晶粒尺寸的假设下计算的。他们发现,在约150 km的深度处,平均晶粒尺寸至少达到15–20 mm。他们还发现平均粒度的结构非常适合上地幔中低地震剪切波速度带。他们预测,位错蠕变是上地幔所有深度的主要变形机制。但是, Behn等人。 [ href="#b7" rid="b7" class=" bibr popnode"> 2009 ]没有计算出地幔角流的影响,因此近岭应变率结构被简化。此外,假设机械工作量恒定不变会减小平均晶粒尺寸,而不是位错工作量相对较小的假设[ Austin and Evans href =“#b3” rid = “ b3” class =“ bibr popnode”> 2007 ],删除了变形机制与平均晶粒尺寸之间潜在的重要耦合。本研究的目的是表征下方晶粒尺寸的变化。大洋中脊,特别关注对脊下方渗透性结构的影响。渗透性结构是对熔体迁移的重要控制,并已被暗示为部分熔体向脊轴线聚焦的关键组成部分。在这种聚焦模型中,例如 Sparks and Parmentier href="#b42" rid="b42" class=" bibr popnode"> 1991 ; Spiegelman href="#b43" rid="b43" class=" bibr popnode"> 1993 Ghods和Arkani-Hamed href="#b18" rid="b18" class=" bibr popnode"> 2000 Hebert和Montési href="#b21" rid="b21" class=" bibr popnode"> 2010 ]地幔圈的冷热边界由于地幔孔隙空间中熔体的冻结而形成了渗透屏障。熔体的浮力驱动的垂直运输在该屏障下方被压实压力梯度所抑制,该压强压力梯度平衡了熔体的浮力。如果热边界垂直于重力矢量,则熔体将被捕获在该边界处。然而,热边界层朝向脊轴线倾斜,使得压实压力梯度的垂直于渗透性屏障起作用的分量将熔体朝向脊轴线驱动。然而,基于渗透率的熔体聚焦模型尚未考虑脊轴下方晶粒尺寸空间变化的贡献。这就提出了一个问题,即晶粒尺寸梯度是否可以充当渗透屏障,如果这样,它将对中洋脊以下的熔体传输产生什么影响。在这项研究中,我们构建了二维单相模型在大洋中脊下方的稳态晶粒尺寸。该模型采用了扩散蠕变,位错蠕变,位错适应晶界滑动和塑性应力限制器的复合流变学。我们选择的流变学允许平均晶粒尺寸和应变率之间存在非线性耦合。位错蠕变和晶界滑动减小了平均晶粒尺寸,进而影响了扩散蠕变和晶界滑动的应变率。平均晶粒度使用古瓦特计模型[ Austin and Evans href="#b3" rid="b3" class=" bibr popnode"> 2007 计算得出]。该模型的动力学由斯托克斯流描述,流变学则取自实验流定律。我们将在第2节中开发模型。首先简要概述标准的Stokes流动动力学,然后详细介绍复合流变学和平均粒度演化模型。第2节通过检查复合流变学对两种不同晶界滑动参数化实验确定的参数变化的敏感性得出结论。在第3节中,我们为中洋脊以下的粒度动力学提供了参考案例,并探讨了该模型对平均粒度演化方程中晶界滑动参数,水浓度和参数摄动的敏感性。在第4节中,我们研究了平均晶粒度对超慢,慢和快扩展速率脊的渗透性结构的影响。然后,在熔体运输的背景下解释了由于平均晶粒尺寸引起的渗透性结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号