首页> 外文OA文献 >Calibration and sensitivity analysis of long-term generation investment models using Bayesian emulation.
【2h】

Calibration and sensitivity analysis of long-term generation investment models using Bayesian emulation.

机译:使用贝叶斯仿真的长期发电投资模型的校准和敏感性分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Investments in generation are high risk, and the introduction of renewable technologies exacerbated concern over capacity adequacy in future power systems. Long-term generation investment (LTGI) models are often used by policymakers to provide future projections given different input configurations. To understand both uncertainty around these projections and the ways they relate to the real-world, LTGI models can be calibrated and then used to make predictions or perform a sensitivity analysis (SA). However, LTGI models are generally computationally intensive and so only a limited number of simulations can be carried out. This paper demonstrates that the techniques of Bayesian emulation can be applied to efficiently perform calibration, prediction and SA for such complex LTGI models.ududA case study relating to GB power system generation planning is presented. Calibration reduces the uncertainty over a subset of model inputs and estimates the discrepancy between the model and the real power system. A plausible range of future projections that is consistent with the available knowledge (both historical observations and expert knowledge) can be predicted. The most important uncertain inputs are identified through a comprehensive SA. The results show that the use of calibration and SA approaches enables better decision making for both investors and policymakers.
机译:发电投资是高风险的,可再生能源技术的引入加剧了人们对未来电力系统容量充足性的担忧。决策者经常使用长期发电投资(LTGI)模型,以根据不同的投入配置提供未来的预测。为了了解围绕这些预测的不确定性以及它们与现实世界相关的方式,可以对LTGI模型进行校准,然后将其用于进行预测或执行敏感性分析(SA)。但是,LTGI模型通常需要大量的计算,因此只能执行有限数量的仿真。本文证明了贝叶斯仿真技术可用于有效地执行此类复杂LTGI模型的校准,预测和SA。 ud ud提供了与GB电力系统发电计划有关的案例研究。校准可减少模型输入子集的不确定性,并估计模型与实际电源系统之间的差异。可以预测与可用知识(历史观测和专家知识)一致的未来预测的合理范围。最重要的不确定输入是通过全面的SA确定的。结果表明,使用校准和SA方法可以为投资者和决策者提供更好的决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号