首页> 外文OA文献 >Using machine learning in trace-driven energy-aware simulations of high-throughput computing systems.
【2h】

Using machine learning in trace-driven energy-aware simulations of high-throughput computing systems.

机译:在高通量计算系统的跟踪驱动的能量感知模拟中使用机器学习。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When performing a trace-driven simulation of a High Throughput Computing system we are limited to the knowledge which should be available to the system at the current point within the simulation. However, the trace-log contains information we would not be privy to during the simulation. Through the use of Machine Learning we can extract the latent patterns within the trace-log allowing us to accurately predict characteristics of tasks based only on the information we would know. These characteristics will allow us to make better decisions within simulations allowing us to derive better policies for saving energy.ududWe demonstrate that we can accurately predict (up-to 99% accuracy), using oversampling and deep learning, those tasks which will complete while at the same time provide accurate predictions for the task execution time and memory footprint using Random Forest Regression.
机译:在执行高通量计算系统的跟踪驱动模拟时,我们仅限于在模拟中的当前点可用于系统的知识。但是,跟踪日志包含在仿真过程中我们不了解的信息。通过使用机器学习,我们可以在跟踪日志中提取潜在模式,从而仅根据我们所知道的信息就可以准确地预测任务的特征。这些特征将使我们能够在仿真中做出更好的决策,从而使我们能够得出更好的节能策略。 ud ud我们证明了我们可以使用过度采样和深度学习来准确预测(高达99%的准确度),完整,同时使用随机森林回归为任务执行时间和内存占用量提供准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号