首页> 外文OA文献 >Scalable optimization algorithms for recommender systems
【2h】

Scalable optimization algorithms for recommender systems

机译:推荐系统的可扩展优化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommender systems have now gained significant popularity and been widely used in many e-commerce applications. Predicting user preferences is a key step to providing high quality recommendations. In practice, however, suggestions made to users must not only consider user preferences in isolation; a good recommendation engine also needs to account for certain constraints. For instance, an online video rental that suggests multimedia items (e.g., DVDs) to its customers should consider the availability of DVDs in stock to reduce customer waiting times for accepted recommendations. Moreover, every user should receive a small but sufficient number of suggestions that the user is likely to be interested in.This thesis aims to develop and implement scalable optimization algorithms that can be used (but are not restricted) to generate recommendations satisfying certain objectives and constraints like the ones above. State-of-the-art approaches lack efficiency and/or scalability in coping with large real-world instances, which may involve millions of users and items. First, we study large-scale matrix completion in the context of collaborative filtering in recommender systems. For such problems, we propose a set of novel shared-nothing algorithms which are designed to run on a small cluster of commodity nodes and outperform alternative approaches in terms of efficiency, scalability, and memory footprint. Next, we view our recommendation task as a generalized matching problem, and propose the first distributed solution for solving such problems at scale. Our algorithm is designed to run on a small cluster of commodity nodes (or in a MapReduce environment) and has strong approximation guarantees. Our matching algorithm relies on linear programming. To this end, we present an efficient distributed approximation algorithm for mixed packing-covering linear programs, a simple but expressive subclass of linear programs. Our approximation algorithm requires a poly-logarithmic number of passes over the input, is simple, and well-suited for parallel processing on GPUs, in shared-memory architectures, as well as on a small cluster of commodity nodes.
机译:推荐系统现在已获得广泛普及,并已广泛用于许多电子商务应用程序中。预测用户偏好是提供高质量建议的关键步骤。但是在实践中,向用户提出的建议不仅必须单独考虑用户的偏好,而且还必须考虑用户的偏好。一个好的推荐引擎还需要考虑某些限制。例如,向客户建议多媒体项目(例如DVD)的在线视频租赁应考虑库存DVD的可用性,以减少客户等待接受推荐的时间。此外,每个用户都应该收到少量但足够数量的用户可能会感兴趣的建议。本论文旨在开发和实现可扩展的优化算法,该算法可用于(但不限于)生成满足某些目标的建议,并且像上面的约束。最新的方法在应对大型现实世界实例时缺乏效率和/或可伸缩性,大型现实世界实例可能涉及数百万个用户和物品。首先,我们在推荐系统中的协作过滤的背景下研究大规模矩阵完成。针对此类问题,我们提出了一组新颖的无共享算法,这些算法设计为在小型商品节点集群上运行,并且在效率,可伸缩性和内存占用方面均优于替代方法。接下来,我们将推荐任务视为广义匹配问题,并提出了第一个大规模解决此类问题的分布式解决方案。我们的算法设计为在小型商品节点集群上运行(或在MapReduce环境中),并具有很强的近似保证。我们的匹配算法依赖于线性规划。为此,我们提出了一种有效的分布式近似算法,用于混合装箱的线性程序,它是线性程序的一个简单但具有表现力的子类。我们的近似算法需要对输入进行多次对数的传递,非常简单,非常适合在GPU,共享内存体系结构以及一小群商品节点上进行并行处理。

著录项

  • 作者

    Makari Manshadi Faraz;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号