首页> 外文OA文献 >Geometric algorithms for object placement and planarity in a terrain
【2h】

Geometric algorithms for object placement and planarity in a terrain

机译:用于地形中对象放置和平面度的几何算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the following placement problem: Let C be a compact set in R2 and let S be a set of n points in R2. The objective is to compute a translate of C that contains the maximum number, kappa*, of points of S. Motivated by the applications in clustering and pattern recognition, this optimal placement problem has received much attention over the last two decades. It is known that this problem can be solved in a time that is roughly quadratic in n. We show for a given epsilon > 0 how random-sampling and bucketing techniques can be used to develop a near-linear-time Monte Carlo algorithm that computes a placement of C containing at least (1 -epsilon)k* points of S with high probability. When C is a unit disk, we give an approximation algorithm for the optimal placement problem by approximating the constraining radius of the disk. Here, our algorithm computes a placement of the disk of radius (1 + epsilon)which contains at least k* points, where k* denotes the maximum number of points covered by any unit disk. the running time of this algorithm is O(n/epsilon2) Then, we turn to the problem of computing the largest connected region in a triangulated terrain of size n for which the normals of the triangles deviate by at most some small fixed angle. we devise an exact algorithm by adapting dynamic graph connectivity algorithm to compute the largest planar region in O(n2log n(log logn)3) time. We also give a heuristic that can be used to compute sufficiently large planar regions in a terrain much faster. We discuss an implementation of this heurisitc, and show some experimental results for terrains representing three-dimensional (topographical) images of fracture surfaces of metals obtained by confocal laser scanning microscopy, which directly motivated our research into this direction. Since the output of this heuristic comes with no quality assurance, we present a new approximation scheme for the same problem wich apart from giving a guarantee on the quality of the produced solution also has been implemented in practice and shows good performance on real-worls data representing fracture surfaces. This approximate deterministic algorithm computes in O(n/epsilon2) time the largest approximately connected planar region in the terrain. We also give a variant of the above algorithm with a better dependence on epsilon at the cost of an extra poly-logarithmic facto on n. For a sufficiently large n, both the algorithms consume optimal O(n) space.
机译:我们考虑以下放置问题:令C为R2中的紧集,令S为R2中的n个点的集合。目的是计算包含最大S点kappa *的C的转换。由于聚类和模式识别中的应用,这种最佳布局问题在过去的二十年中受到了广泛关注。众所周知,这个问题可以在大约n二次方的时间内解决。对于给定的epsilon> 0,我们展示了如何使用随机采样和存储技术来开发近线性时间蒙特卡洛算法,该算法计算包含至少S个(1-epsilon)k *点的C的位置。可能性。当C是单位圆盘时,我们通过近似圆盘的约束半径来给出最佳放置问题的近似算法。在这里,我们的算法计算半径为(1 + epsilon)的磁盘的位置,该位置至少包含k *个点,其中k *表示任何单位磁盘覆盖的最大点数。该算法的运行时间为O(n / epsilon2)。然后,我们转向在三角大小为n的三角地形中计算最大连通区域的问题,对于该三角区域,三角形的法线最多偏离某个小固定角度。我们通过调整动态图连通性算法来设计精确算法,以计算O(n2log n(log logn)3)时间中的最大平面区域。我们还给出了一种启发式算法,可用于更快地计算地形中足够大的平面区域。我们讨论了这种启发式方法的实现,并显示了一些通过共聚焦激光扫描显微镜获得的代表金属断裂表面的三维(地形图)图像的地形的实验结果,这直接推动了我们朝这个方向发展。由于这种启发式方法的输出没有质量保证,因此,我们为相同的问题提出了一种新的近似方案,除了保证生产的解决方案的质量外,在实践中也已实施,并且在实数数据上显示出良好的性能。代表断裂面。该近似确定性算法以O(n / eps2)时间计算地形中最大的近似连接平面区域。我们还给出了上述算法的一种变体,它对epsilon的依赖性更好,但以n上额外的多对数事实为代价。对于足够大的n,两种算法都消耗最佳O(n)空间。

著录项

  • 作者

    Ray Rahul;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号