We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstrau27s SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.
展开▼