首页> 外文OA文献 >Adaptive radial basis function interpolation using an error indicator
【2h】

Adaptive radial basis function interpolation using an error indicator

机译:使用误差指示器的自适应径向基函数插值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In some approximation problems, sampling from the target function can be both expensive and time-consuming. It would be convenient to have a method for indicating where approximation quality is poor, so that generation of new data provides the user with greater accuracy where needed. In this paper, we propose a new adaptive algorithm for radial basis function (RBF) interpolation which aims to assess the local approximation quality, and add or remove points as required to improve the error in the specified region. For Gaussian and multiquadric approximation, we have the flexibility of a shape parameter which we can use to keep the condition number of interpolation matrix at a moderate size. Numerical results for test functions which appear in the literature are given for dimensions 1 and 2, to show that our method performs well. We also give a three-dimensional example from the finance world, since we would like to advertise RBF techniques as useful tools for approximation in the high-dimensional settings one often meets in finance.
机译:在某些近似问题中,从目标函数进行采样可能既昂贵又耗时。具有指示近似质量差的方法的位置将是方便的,以便在需要的地方生成新数据为用户提供更高的准确性。在本文中,我们提出了一种新的径向基函数(RBF)插值自适应算法,旨在评估局部近似质量,并根据需要添加或删除点以改善指定区域中的误差。对于高斯和多二次近似,我们具有形状参数的灵活性,可以用来将插值矩阵的条件数保持在适当的大小。对于尺寸1和2,给出了文献中出现的测试函数的数值结果,以表明我们的方法性能良好。我们还举了一个金融领域的三维示例,因为我们想宣传RBF技术,将其作为在金融中经常遇到的高维环境中进行逼近的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号