首页> 外文OA文献 >Coping with False Accusations in Misbehavior Reputation Systems for Mobile Ad-hoc Networks
【2h】

Coping with False Accusations in Misbehavior Reputation Systems for Mobile Ad-hoc Networks

机译:应对移动自组织网络的不良行为信誉系统中的虚假指控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Some misbehavior detection and reputation systems in mobile ad-hoc networks rely on the dissemination of information of observed behavior, which makes them vulnerable to false accusations. This vulnerability could be removed by forbidding the dissemination of information on observed behavior in the first place, but, as we show here, this has more drawbacks than a solution that allows dissemination and copes with false accusations. We propose a method for reducing the impact of false accusations. In our approach, nodes collect first-hand information about the behavior of other nodes by direct observation. In addition, nodes maintain a rating about every other node that they care about, in the form of a continuous variable per node. From time to time nodes exchange their first-hand information with others, but, using the Bayesian approach we designed and present in this paper, only second-hand information that is not incompatible with the current rating is accepted. Ratings are slightly modified by accepted information. The reputation of a given node is the collection of ratings maintained by others about this node. By means of simulation we evaluated the robustness of our approach against several types of adversaries that spread false information, and its efficiency at detecting malicious nodes. The simulation results indicate that our system largely reduces the impact of false accusations, while still benefiting from the accelerated detection of malicious nodes provided by second-hand information. We also found that when information dissemination is not used, the time until malicious nodes are detected can be unacceptable.
机译:移动自组织网络中的某些不良行为检测和信誉系统依赖于所观察到的行为信息的传播,这使其容易受到错误指控。可以通过首先禁止传播有关观察到的行为的信息来消除此漏洞,但是,正如我们在此处所示,这比允许传播并应对错误指控的解决方案具有更多的弊端。我们提出一种减少虚假指控影响的方法。在我们的方法中,节点通过直接观察收集有关其他节点行为的第一手信息。另外,节点以每个节点连续变量的形式维护他们关心的每个其他节点的等级。节点不时与其他节点交换其第一手信息,但是,使用我们设计并在本文中提出的贝叶斯方法,仅接受与当前评级不兼容的第二手信息。评分会因接受的信息而略有修改。给定节点的信誉是其他人对该节点维护的评级的集合。通过仿真,我们评估了针对散布虚假信息的几种类型的对手的方法的鲁棒性以及其检测恶意节点的效率。仿真结果表明,我们的系统在很大程度上减少了错误指控的影响,同时仍然受益于对二手信息提供的恶意节点的加速检测。我们还发现,如果不使用信息传播,那么直到检测到恶意节点为止的时间是不可接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号