首页> 外文OA文献 >Oversampled A/D Conversion and Error-Rate Dependence of Non-Bandlimited Signals with Finite Rate of Innovation
【2h】

Oversampled A/D Conversion and Error-Rate Dependence of Non-Bandlimited Signals with Finite Rate of Innovation

机译:具有有限创新速率的非带限信号的过采样A / D转换和误差率相关性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the problem of A/D conversion and error-rate dependence of a class of non-bandlimited signals which have a finite rate of innovation, particularly, a continuous periodic stream of Diracs, characterized by a finite set of time positions and weights. Previous research has only considered sampling of this type of signals, ignoring the presence of quantization, which is necessary for any practical application. We first define the concept of consistent reconstruction for these signals and introduce the operations of both: a) oversampling in frequency, determined by the bandwidth of the low pass filtering used in the signal acquisition, and b) oversampling in time, determined by the number of samples in time taken from the filtered signal. Accuracy in a consistent reconstruction is achieved by enforcing the reconstructed signal to satisfy three sets of constrains, defined by: the low-pass filtering operation, the quantization operation itself and the signal space of continuous periodic streams of Diracs. We provide two schemes to reconstruct the signal. For the first one, we prove that the mean squared error (MSE) of the time positions is of the order of O(1/R_t^2R_f^3), where R_t and R_f are the oversampling ratios in time and in frequency, respectively. For the second scheme, which has a higher complexity, it is experimentally observed that the MSE of the time positions is of the order of O(1/R_t^2R_f^5). Our experimental results show a clear advantage of consistent reconstruction over non-consistent reconstruction. Regarding the rate, we consider a threshold crossing based scheme where, as opposed to previous research, both oversampling in time and also in frequency influence the coding rate. We compare the error-rate dependence behavior that is obtained from both increasing the oversampling in time and in frequency, on the one hand, and on the other hand, from decreasing the quantization stepsize.
机译:我们研究一类具有有限创新率的非带宽信号的A / D转换和误差率依赖性问题,特别是狄拉克斯的连续周期性流,其特征是具有一组有限的时间位置和权重。先前的研究仅考虑了此类信号的采样,而忽略了任何实际应用所必需的量化的存在。我们首先定义这些信号的一致重构的概念,并介绍以下两种操作:a)频率过采样,由信号采集中使用的低通滤波的带宽确定; b)时间过采样,由数量确定从滤波后的信号中及时提取样本数。通过使重建的信号满足三组约束,可以实现一致重建的精度,这三组约束由以下各项定义:低通滤波操作,量化操作本身以及狄拉克斯连续周期流的信号空间。我们提供两种方案来重构信号。对于第一个,我们证明时间位置的均方误差(MSE)约为O(1 / R_t ^ 2R_f ^ 3),其中R_t和R_f分别是时间和频率上的过采样率。对于具有较高复杂度的第二种方案,通过实验观察到,时间位置的MSE约为O(1 / R_t ^ 2R_f ^ 5)。我们的实验结果表明,一致重构比非一致重构具有明显的优势。关于速率,我们考虑基于阈值穿越的方案,与先前的研究相反,时间和频率上的过度采样都会影响编码速率。我们比较一方面通过增加时间和频率上的过采样,另一方面通过减少量化步长获得的错误率依赖性行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号