首页> 外文期刊>IEEE Transactions on Signal Processing >Oversampled A/D Conversion and Error-Rate Dependence of Nonbandlimited Signals With Finite Rate of Innovation
【24h】

Oversampled A/D Conversion and Error-Rate Dependence of Nonbandlimited Signals With Finite Rate of Innovation

机译:具有有限创新速率的非带限信号的过采样A / D转换和误差率相关性

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of A/D conversion and error-rate dependence of a class of nonbandlimited signals with finite rate of innovation. In particular, we analyze a continuous periodic stream of Diracs, characterized by a finite set of time positions and weights. Previous research has only considered sampling of this type of signals, ignoring the presence of quantization, necessary for any practical implementation. To this end, we first define the concept of consistent reconstruction and introduce corresponding oversampling in both time and frequency. High accuracy in a consistent reconstruction is achieved by enforcing the reconstructed signal to satisfy three sets of constraints, related to low-pass filtering, quantization and the space of continuous periodic streams of Diracs. We provide two schemes to reconstruct the signal. For the first one, we prove that the estimation mean squared error of the time positions is O(1/R_(t)~(2) R_(f)~(3)), where R_(t) and R_(f) are the oversampling ratios in time and frequency, respectively. For the second scheme, it is experimentally observed that, at the cost of higher complexity, the estimation accuracy lowers to O(1/R_(t)~(2) R_(f)~(5)). Our experimental results show a clear advantage of consistent over nonconsistent reconstruction. Regarding the rate, we consider a threshold crossing based scheme where, as opposed to previous research, both oversampling in time and in frequency influence the coding rate. We compare the error-rate behavior resulting, on the one hand, from increasing the oversampling in time and/or frequency, and, on the other hand, from decreasing the quantization stepsize.
机译:我们研究了具有有限创新率的一类非带宽信号的A / D转换和误差率依赖性问题。特别是,我们分析了狄拉克斯的连续周期性流,其特征是时间位置和权重的有限集合。先前的研究仅考虑了此类信号的采样,而忽略了任何实际实现所必需的量化的存在。为此,我们首先定义一致重构的概念,并在时间和频率上引入相应的过采样。通过使重构信号满足三组约束(与低通滤波,量化和狄拉克斯连续周期流的空间有关),可以实现一致重建中的高精度。我们提供两种方案来重构信号。对于第一个,我们证明时间位置的估计均方误差为O(1 / R_(t)〜(2)R_(f)〜(3)),其中R_(t)和R_(f)分别是时间和频率上的过采样率。对于第二种方案,实验观察到,以较高的复杂性为代价,估计精度降低到O(1 / R_(t)〜(2)R_(f)〜(5))。我们的实验结果表明,一致重构优于非一致重构。关于速率,我们考虑基于阈值穿越的方案,与先前的研究相反,时间和频率上的过度采样都会影响编码速率。我们一方面比较误差率行为,一方面是由于增加了时间和/或频率上的过采样,另一方面是由于减小了量化步长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号