summary:Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\geq 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih} (m,G,\alpha )$ be defined on $\mathbb Z_m\times G$ by \begin{equation*} (i,u)(j,v) = (i\oplus j,\,((-1)^{j}u + v)\alpha^{ij}). \end{equation*} The resulting loop is automorphic if and only if $m=2$ or ($\alpha^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.
展开▼
机译:摘要:自构循环是其中所有内部映射都是自构的循环。我们研究了群体二面体构造的一般化。即,如果$(G,+)$是阿贝尔群,$ m \ geq 1 $和$ \ alpha \在\ operatorname {Aut}(G)$中,则让$ \ operatorname {Dih}(m,G,\ alpha)$由\ begin {equation *}(i,u)(j,v)=(i \ oplus j,\,((-1)^ {j} u)在$ \ mathbb Z_m \ times G $上定义+ v)\ alpha ^ {ij})。 \ end {equation *}当且仅当$ m = 2 $或($ \ alpha ^ 2 = 1 $并且$ m $是偶数)时,结果循环才是自同构的。案例$ m = 2 $由Kinyon,Kunen,Phillips和Vojtěchovský提出。在这两种情况下,我们介绍了有关自构二面环的几个结构结果。
展开▼