首页> 外文OA文献 >Identification of key GMAW fillet weld parameters and interactions using artificial neural networks
【2h】

Identification of key GMAW fillet weld parameters and interactions using artificial neural networks

机译:使用人工神经网络识别关键的GMAW角焊缝参数及其相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fillet welds are one of the most commonly used weld joints but one of the most difficult to weld consistently. This paper presents a technique using Artificial Neural Networks (ANN) to identify the key Gas Metal Arc Welding (GMAW) fillet weld parameters and interactions that impact on the resultant geometry, when using a metal cored wire. The input parameters to the model were current, voltage, travel speed; gun angle and travel angle and the outputs of the model were penetration and leg length. The model was in good agreement with experimental data collected and the subsequent sensitivity analysis showed that current was the most influential parameter in determining penetration and that travel speed, followed closely by current and voltage were most influential in determining the leg length. The paper also concludes that a ‘pushing’ travel angle is preferred when trying to control the resultant geometry mainly because both the resultant leg length and penetration appear to be less sensitive to changes in heat input.
机译:角焊缝是最常用的焊接接头之一,但也是最难连续焊接的接头之一。本文介绍了一种使用人工神经网络(ANN)来识别使用金属芯焊丝的关键气体金属电弧焊(GMAW)角焊缝参数以及影响最终几何形状的相互作用的技术。模型的输入参数是电流,电压,行进速度;枪的角度和行进角度以及模型的输出为穿透力和腿长。该模型与所收集的实验数据非常吻合,随后的灵敏度分析表明,电流是确定穿透力的最重要参数,行进速度紧随其后,电流和电压对确定腿长的影响最大。该论文还得出结论,在尝试控制最终的几何形状时,最好采用“推”行进角,这主要是因为最终的腿长和穿透力似乎对热输入的变化不太敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号