首页> 外文OA文献 >Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels
【2h】

Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels

机译:稀疏气体流经不规则通道的离散速度和格子Boltzmann方法的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g.~D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as that used in simulating hydrodynamics (i.e.~D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. {In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature can not describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows.} Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.
机译:从气体动力学出发,格子玻尔兹曼方法(LBM)是对流体动力学建模的强大工具。在过去的十年中,通过使用高阶高斯-赫尔姆特积分或引入弛豫时间(它是气壁距离的函数),它已扩展到模拟超出Navier-Stokes水平的稀薄气流。前一种方法具有有限数量的离散速度(例如〜D2Q36),在早期过渡流态下仍是准确的,而后一种方法(尤其是多重弛豫时间(MRT)LBM),具有与之相同的离散速度模拟流体动力学(即〜D2Q9)时使用的方法精确到平面Poiseuille流中的自由分子流态。从较少的离散速度更精确的意义上来说,这是非常令人惊讶的。 {本文中,通过离散速度方法精确求解Bhatnagar-Gross-Krook动力学方程,我们发现,当稀疏效应很强时,高阶高斯-赫姆特积分不能描述速度分布函数的大变化。 ,但MRT-LBM可以很好地捕获流速,因为它等效于用有效剪切粘度求解Navier-Stokes方程。由于MRT-LBM仅在简单的通道流中得到了验证,并且对于复杂的几何形状,很难找到有效的粘度,因此有必要评估其在稀薄气体流模拟中的性能。}我们基于精确的数值模拟离散速度方法表明,在稀薄气体流经粗糙表面和多孔介质的模拟中,MRT-LBM的精度大大降低。我们的模拟结果可作为LBM未来开发的基准案例,以用于复杂几何形状中稀薄气体流的建模和模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号