首页> 外文OA文献 >Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures
【2h】

Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures

机译:生物大分子立体结构介导手性等离子体纳米结构中的模式杂交。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The refractive index sensitivity of plasmonic fields has been exploited for over 20 years in analytical technologies. While this sensitivity can be used to achieve attomole detection levels, they are in essence binary measurements that sense the presence/absence of a predetermined analyte. Using plasmonic fields, not to sense effective refractive indices but to provide more "granular" information about the structural characteristics of a medium, provides a more information rich output, which affords opportunities to create new powerful and flexible sensing technologies not limited by the need to synthesize chemical recognition elements. Here we report a new plasmonic phenomenon that is sensitive to the biomacromolecular structure without relying on measuring effective refractive indices. Chiral biomaterials mediate the hybridization of electric and magnetic modes of a chiral solid-inverse plasmonic structure, resulting in a measurable change in both reflectivity and chiroptical properties. The phenomenon originates from the electric-dipole–magnetic-dipole response of the biomaterial and is hence sensitive to biomacromolecular secondary structure providing unique fingerprints of α-helical, β-sheet, and disordered motifs. The phenomenon can be observed for subchiral plasmonic fields (i.e., fields with a lower chiral asymmetry than circularly polarized light) hence lifting constraints to engineer structures that produce fields with enhanced chirality, thus providing greater flexibility in nanostructure design. To demonstrate the efficacy of the phenomenon, we have detected and characterized picogram quantities of simple model helical biopolymers and more complex real proteins.
机译:等离子体场的折射率敏感性已在分析技术中应用了20多年。尽管可以使用此灵敏度来实现原子检测水平,但它们本质上是二进制测量值,可检测到预定分析物的存在/不存在。使用等离激元场,而不是感测有效折射率,而是提供有关介质结构特征的更多“颗粒”信息,可提供更多信息,从而提供了创建不受限制的新功能的强大而灵活的感测技术的机会。合成化学识别元素。在这里,我们报告了一种新的等离子体现象,该现象对生物大分子结构很敏感,而无需依靠测量有效折射率。手性生物材料介导手性固-逆等离激元结构的电和磁模式的杂化,导致反射率和手性的可测量变化。该现象起源于生物材料的电偶极-磁偶极响应,因此对生物大分子二级结构敏感,提供了α-螺旋,β-折叠和无序基序的独特指纹。可以在亚手性等离子体场(即,具有比圆偏振光低的手性不对称性的场)中观察到该现象,因此解除了对工程结构的约束,从而工程化了产生具有增强的手性的场,从而在纳米结构设计中提供了更大的灵活性。为了证明这种现象的功效,我们已经检测并表征了简单模型的螺旋生物聚合物和更复杂的真实蛋白质的皮克数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号