首页> 外文期刊>Nano letters >Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures
【24h】

Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures

机译:生物大分子立体结构介导手性等离子体纳米结构中的模式杂交。

获取原文
获取原文并翻译 | 示例
           

摘要

The refractive index sensitivity of plasmonic fields has been: exploited for over 20 years in analytical technologies. While this sensitivity can be used to achieve attomole detection levels, they ate in essence binary measurements that sense the presence/absence of a predetermined analyte. Using plasmonic fields, not to sense effective refractive indices but to provide more "granular" information about the structural characteristics of a medium, provides a more information rich output, which affords opportunities to create new powerful and flexible sensing technologies not limited by the need to synthesize chemical recognition elements. Here we report a new plasmonic phenomenon that is sensitive to the biomacromolecular structure without relying on measuring effective refractive indices. Chiral biomaterials mediate the hybridization of electric and magnetic modes of a chiral solid-inverse plasmonic structure, resulting in a measurable change in both reflectivity and chiroptical properties. The phenomenon originates from the electric-dipole magnetic-dipole response of the biomaterial and is hence sensitive to biomacromolecular secondary structure providing unique fingerprints of alpha-helical, beta-sheet, and disordered motifs. The phenomenon can be observed for subchiral plasmonic fields (i.e., fields with a lower chiral asymmetry than circularly polarized light) hence lifting constraints to engineer structures that produce fields with enhanced chirality, thus providing greater flexibility in nanostructure design: To demonstrate the efficacy of the phenomenon, we have detected and characterized picogram quantities of simple model helical biopolymers and more complex real proteins.
机译:等离子体场的折射率敏感性已被:在分析技术中使用了20多年。尽管可以使用这种灵敏度来实现原子检测水平,但它们本质上是进行二进制测量,以检测预定分析物的存在/不存在。使用等离激元场,而不是感测有效折射率,而是提供有关介质结构特征的更多“颗粒”信息,可以提供更多信息,从而提供了创建不受限制的新功能的强大而灵活的传感技术的机会。合成化学识别元素。在这里,我们报告了一种新的等离子体现象,该现象对生物大分子结构很敏感,而无需依靠测量有效折射率。手性生物材料介导了手性固-逆等离激元结构的电和磁模式的杂化,从而导致反射率和手性的可测量变化。该现象源于生物材料的电偶极子磁偶极子响应,因此对生物大分子二级结构敏感,提供了α-螺旋,β-折叠和无序基序的独特指纹。可以在手征性等离子体场(即,手征非对称性低于圆偏振光的场)中观察到该现象,因此解除了对产生手征性增强的场的工程结构的限制,从而在纳米结构设计中提供了更大的灵活性:现象,我们已经检测到并表征了简单模型的螺旋生物聚合物和更复杂的真实蛋白质的皮克数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号