首页> 外文OA文献 >Generic fibrational induction
【2h】

Generic fibrational induction

机译:通用纤维诱导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs' elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, a sound induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of a particular syntactic form. We establish the soundness of our generic induction rule by reducing induction to iteration. We then show how our generic induction rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The first of these lies outside the scope of Hermida and Jacobs' work because it is not polynomial, and as far as we are aware, no induction rules have been known to exist for the second and third in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.
机译:本文提供了一种归纳规则,可用于证明类型为归纳的数据结构的属性,即归纳为函子的初始代数的载体。我们的结果本质上是语义的,并且受到Hermida和Jacobs关于多项式数据类型的归纳的优雅代数公式的启发。我们的贡献是,在略有不同的假设下,得出对所有归纳类型(多项式或非多项式)通用的声音归纳规则。我们的归纳规则在待证明的性质种类上也是通用的:像Hermida和Jacobs一样,我们在一般的语调环境中工作,因此可以容纳归纳类型的非常一般的性质概念,而不仅仅是特定语法形式的性质。我们通过减少归纳迭代来建立通用归纳规则的稳健性。然后,我们展示了如何实例化我们的通用归纳规则,以给出玫瑰树,有限的遗传集和超功能的数据类型的归纳规则。其中的第一个不在Hermida和Jacobs的工作范围之内,因为它不是多项式,并且据我们所知,在一般的振动框架中,对于第二个和第三个都不存在归纳规则。我们对超功能的实例化强调了在常规振动设置中工作的价值,因为该数据类型无法解释为集合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号