首页> 外文OA文献 >The Application of Wavelet-Based Contourlet Transform on Compressed Sensing
【2h】

The Application of Wavelet-Based Contourlet Transform on Compressed Sensing

机译:基于小波的Contourlet变换在压缩感知中的应用

摘要

Reasonable sparse representation of signals are one of the key factors to ensure the quality of compressed sampling, so a proper sparse representing methods should be selected to make the signals sparse to the greatest extent in the applications of compressed sensing. In this paper we employed the wavelet-based contourlet transform, an improved contourlet transform, to decompose 2D images, adopted the framework of block compressed sensing to sample the images, and used the iterative hard thresholding algorithm to reconstruct the original images. Numerical experiments indicated that the runtime of the reconstruction algorithm adopting wavelet-based contourlet transform is the shortest compared to that adopting contourlet transform and that adopting wavelet transform; under low compression ratios, the quality of the reconstructed images using wavelet-based contourlet transform is superior to that using contourlet transform and that using traditional wavelet transform.
机译:信号的稀疏表示的合理性是保证压缩采样质量的关键因素之一,因此在压缩传感的应用中应选择适当的稀疏表示方法,以使信号的稀疏程度达到最大。在本文中,我们采用基于小波的Contourlet变换(一种改进的Contourlet变换)来分解2D图像,采用块压缩感测框架对图像进行采样,并使用迭代硬阈值算法重建原始图像。数值实验表明,与基于轮廓波变换和基于小波变换的重构算法相比,采用小波轮廓波变换的重构算法的运行时间最短。在低压缩比下,基于小波的Contourlet变换的图像重建质量优于传统的Contourlet变换和传统小波变换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号