首页> 外文OA文献 >Autoencoder-based fault diagnosis for grinding system
【2h】

Autoencoder-based fault diagnosis for grinding system

机译:基于自动编码器的磨削系统故障诊断

摘要

At present, most fault diagnosis for grinding system is based on artificial judgments, which is inefficient, low accurate, high cost and easy to cause casualties. The traditional neural network has an unsatisfying performance to predict on high dimensional dataset, and is hard to extract crucial features, which brings about terrible classification results. To solve the above problems, the paper present a deep learning based on autoencoder to realize the intelligent diagnosis for grinding system. The algorithm applies autoencoder to extract features from fault dataset, and transit the non-linearized features to Softmax classification to recognize the fault category. This paper compares autoencoder-based deep learning networks and the traditional BP neural networks in experiments, and it is concluded that the autoencoder-based deep learning outperforms BP networks in the unbalanced classification. The classification precision is up to 92.4% by using the proposed method.
机译:目前,大多数磨削系统的故障诊断都是基于人工判​​断,效率低,准确度低,成本高,容易造成人员伤亡。传统的神经网络在高维数据集上的预测性能不尽人意,并且难以提取关键特征,从而导致可怕的分类结果。针对上述问题,本文提出了一种基于自动编码器的深度学习方法,以实现磨削系统的智能诊断。该算法应用自动编码器从故障数据集中提取特征,并将非线性特征转换为Softmax分类,以识别故障类别。本文在实验中将基于自动编码器的深度学习网络与传统的BP神经网络进行了比较,得出的结论是,在不平衡分类中,基于自动编码器的深度学习优于BP网络。使用该方法可以使分类精度达到92.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号