首页> 外文OA文献 >Sub-Nyquist signal-reconstruction-free operational modal analysis and damage detection in the presence of noise
【2h】

Sub-Nyquist signal-reconstruction-free operational modal analysis and damage detection in the presence of noise

机译:在存在噪声的情况下,无需进行亚奈奎斯特无信号重构的运行模式分析和损伤检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivated by a need to reduce energy consumption in wireless sensors for vibration-based structural health monitoring (SHM) associated with data acquisition and transmission, this paper puts forth a novel approach for undertaking operational modal analysis (OMA) and damage localization relying on compressed vibrations measurements sampled at rates well below the Nyquist rate. Specifically, non-uniform deterministic sub-Nyquist multi-coset sampling of response acceleration signals in white noise excited linear structures is considered in conjunction with a power spectrum blind sampling/estimation technique which retrieves/samples the power spectral density matrix from arrays of sensors directly from the sub-Nyquist measurements (i.e., in the compressed domain) without signal reconstruction in the time-domain and without posing any signal sparsity conditions. The frequency domain decomposition algorithm is then applied to the power spectral density matrix to extract natural frequencies and mode shapes as a standard OMA step. Further, the modal strain energy index (MSEI) is considered for damage localization based on the mode shapes extracted directly from the compressed measurements. The effectiveness and accuracy of the proposed approach is numerically assessed by considering simulated vibration data pertaining to a white-noise excited simply supported beam in healthy and in 3 damaged states, contaminated with Gaussian white noise. Good accuracy is achieved in estimating mode shapes (quantified in terms of the modal assurance criterion) and natural frequencies from an array of 15 multi-coset devices sampling at a 70% slower than the Nyquist frequency rate for SNRs as low as 10db. Damage localization of equal level/quality is also achieved by the MSEI applied to mode shapes derived from noisy sub-Nyquist (70% compression) and Nyquist measurements for all damaged states considered. Overall, the furnished numerical results demonstrate that the herein considered sub-Nyquist sampling and multi-sensor power spectral density estimation techniques coupled with standard OMA and damage detection approaches can achieve effective SHM from significantly fewer noisy acceleration measurements.
机译:出于减少与数据采集和传输相关的基于振动的结构健康监测(SHM)的无线传感器的需求,本文提出了一种新的方法来进行操作模态分析(OMA)和依靠压缩振动进行损伤定位以远低于奈奎斯特速率的速率采样的测量值。具体来说,考虑结合白噪声激发线性结构中响应加速度信号的非均匀确定性亚奈奎斯特多陪集采样与功率谱盲采样/估计技术结合使用,该技术直接从传感器阵列中检索/采样功率谱密度矩阵。从子奈奎斯特测量(即在压缩域中)进行,而无需在时域中进行信号重建,也不会构成任何信号稀疏性条件。然后将频域分解算法应用于功率谱密度矩阵,以提取自然频率和模态形状,作为标准的OMA步骤。此外,基于直接从压缩测量中提取的模态形状,将模态应变能指数(MSEI)考虑为损伤定位。通过考虑与健康和3种损坏状态下被高斯白噪声污染的白噪声激发简支梁有关的模拟振动数据,对所提出方法的有效性和准确性进行了数值评估。在估计低至10db的SNR时,在估计模式形状(根据模式保证标准进行了量化)和15个多陪伴设备阵列的自然频率中,采样率比奈奎斯特频率速率慢70%,可以达到良好的精度。通过将MSEI应用于从噪声亚奈奎斯特(70%压缩)和奈奎斯特测量得出的所有损坏状态得出的振型上,也可以实现相等级别/质量的损伤定位。总体而言,所提供的数值结果表明,本文考虑的亚奈奎斯特采样和多传感器功率谱密度估计技术与标准OMA和损伤检测方法相结合,可以从明显较少的噪声加速度测量中获得有效的SHM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号