首页> 外文OA文献 >Assessment of sub-Nyquist deterministic and random data sampling techniques for operational modal analysis
【2h】

Assessment of sub-Nyquist deterministic and random data sampling techniques for operational modal analysis

机译:评估用于操作模态分析的亚奈奎斯特确定性和随机数据采样技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper assesses numerically the potential of two different spectral estimation approaches supporting non-uniform in time data sampling at sub-Nyquist average rates (i.e., below the Nyquist frequency) to reduce data transmission payloads in wireless sensor networks (WSNs) for operational modal analysis (OMA) of civil engineering structures. This consideration relaxes transmission bandwidth constraints in WSNs and prolongs sensor battery life since wireless transmission is the most energy-hungry on-sensor operation. Both the approaches assume acquisition of sub-Nyquist structural response acceleration measurements and transmission to a base station without on-sensor processing. The response acceleration power spectral density matrix is estimated directly from the sub-Nyquist measurements and structural mode shapes are extracted using the frequency domain decomposition algorithm. The first approach relies on the compressive sensing (CS) theory to treat sub-Nyquist randomly sampled data assuming that the acceleration signals are sparse/compressible in the frequency domain (i.e., have a small number of Fourier coefficients with significant magnitude). The second approach is based on a power spectrum blind sampling (PSBS) technique considering periodic deterministic sub-Nyquist “multi-coset” sampling and treating the acceleration signals as wide-sense stationary stochastic processes without posing any sparsity conditions. The modal assurance criterion (MAC) is adopted to quantify the quality of mode shapes derived by the two approaches at different sub-Nyquist compression rates (CRs) using computer-generated signals of different sparsity and field-recorded stationary data pertaining to an overpass in Zurich, Switzerland. It is shown that for a given CR, the performance of the CS-based approach is detrimentally affected by signal sparsity, while the PSBS-based approach achieves MAC>0.96 independently of signal sparsity for CRs as low as 11% the Nyquist rate. It is concluded that the PSBS-based approach reduces effectively data transmission requirements in WSNs for OMA, without being limited by signal sparsity and without requiring a priori assumptions or knowledge of signal sparsity.
机译:本文从数字上评估了两种不同频谱估计方法的潜力,这些方法支持以次奈奎斯特平均速率(即,低于奈奎斯特频率)在时间数据采样上不均匀,以减少无线传感器网络(WSN)中的数据传输有效载荷,以进行操作模式分析(OMA)的土木工程结构。由于无线传输是最耗能的传感器上操作,因此此考虑放松了WSN中的传输带宽约束,并延长了传感器电池寿命。两种方法均假设获得了亚奈奎斯特结构响应加速度的测量值,并且无需进行传感器上的处理即可传输到基站。响应加速功率谱密度矩阵直接从亚奈奎斯特测量值估计,并使用频域分解算法提取结构模式形状。第一种方法依靠压缩感测(CS)理论来处理亚奈奎斯特随机采样数据,假设加速度信号在频域中是稀疏/可压缩的(即具有少量的傅立叶系数且幅度很大)。第二种方法基于功率谱盲采样(PSBS)技术,该技术考虑了周期性确定性亚奈奎斯特“多陪集”采样,并将加速度信号视为广义的固定随机过程,而不会造成任何稀疏情况。采用模态保证标准(MAC)来量化两种方法在不同的次奈奎斯特压缩率(CR)下使用计算机生成的不同稀疏性信号和现场记录的与立交桥有关的固定数据得出的模态形状的质量瑞士苏黎世。结果表明,对于给定的CR,基于CS的方法的性能受信号稀疏性的不利影响,而基于PSBS的方法对于低至奈奎斯特速率11%的CR而言,独立于信号稀疏性而达到MAC> 0.96。结论是,基于PSBS的方法有效降低了OSN在WSN中的数据传输要求,而不受信号稀疏性的限制,并且不需要先验假设或信号稀疏性的知识。

著录项

  • 作者

    Gkoktsi K.; Giaralis A.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号