首页> 外文OA文献 >Speaker recognition with hybrid features from a deep belief network
【2h】

Speaker recognition with hybrid features from a deep belief network

机译:来自深度信仰网络的具有混合功能的说话人识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Learning representation from audio data has shown advantages over the handcrafted features such as mel-frequency cepstral coefficients (MFCCs) in many audio applications. In most of the representation learning approaches, the connectionist systems have been used to learn and extract latent features from the fixed length data. In this paper, we propose an approach to combine the learned features and the MFCC features for speaker recognition task, which can be applied to audio scripts of different lengths. In particular, we study the use of features from different levels of deep belief network for quantizing the audio data into vectors of audio word counts. These vectors represent the audio scripts of different lengths that make them easier to train a classifier. We show in the experiment that the audio word count vectors generated from mixture of DBN features at different layers give better performance than the MFCC features. We also can achieve further improvement by combining the audio word count vector and the MFCC features.
机译:在许多音频应用中,从音频数据中学习表示已显示出优于诸如mel倒谱系数(MFCC)之类的手工特征的优势。在大多数表示学习方法中,连接器系统已用于从固定长度数据中学习和提取潜在特征。在本文中,我们提出了一种将学习到的特征与MFCC特征相结合以实现说话人识别任务的方法,该方法可以应用于不同长度的音频脚本。尤其是,我们研究了使用来自不同级别的深度信任网络的功能来将音频数据量化为音频单词计数的向量。这些向量表示不同长度的音频脚本,使它们更容易训练分类器。我们在实验中表明,由DBN特征在不同层混合生成的音频字数向量比MFCC特征具有更好的性能。通过结合音频单词计数向量和MFCC功能,我们也可以实现进一步的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号