首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Hybrid features and exponential moth-flame optimization based deep belief network for face recognition
【24h】

Hybrid features and exponential moth-flame optimization based deep belief network for face recognition

机译:基于混合特征和指数蛾火焰优化的面部识别深度信念网络

获取原文
获取原文并翻译 | 示例

摘要

Face recognition finds its application in various areas, like biometrics, person identification through their identity cards, Closed-Circuit Television (CCTV) cameras, and so on. Among various biometrics, such as fingerprint, palm print, iris, etc., face plays an important role. Hence, a face recognition technology was developed in the previous papers, with contributions in the feature extraction and classification phases. In this paper, an approach is developed for face recognition using the proposed Exponential Moth-flame Optimisation (Exponential MFO) based Deep Belief Network (DBN). Initially, the images in the database undergo feature extraction, where the features, such as K-SIFT, m-Co-HOG, along with Active Appearance Models (AAM) features are extracted from the image. Then, the classification is done using the proposed EMFO-DBN. The proposed EMFO-DBN is designed by integrating the Exponential Weighted Moving Average (EWMA) into the update process of the Moth flame optimisation (MFO) algorithm. The experimentation of the proposed method has been done using the CVL database, and the proposed method outclassed other state of the art techniques with the values of 0.98, 0.0073, and 0.0083, respectively, for accuracy, FAR, and FRR, respectively.
机译:面部识别在各种领域中发现其应用,如生物识别,通过其身份证,闭路电视(CCTV)相机等人识别。在各种生物识别技术中,如指纹,棕榈印刷,虹膜等,面部扮演着重要作用。因此,在先前的论文中开发了一种人脸识别技术,具有特征提取和分类阶段的贡献。本文使用基于指数蛾火焰优化(指数MFO)的深度信仰网络(DBN)开发了一种用于人脸识别的方法。最初,数据库中的图像经历特征提取,其中从图像中提取诸如K-SIFT,M-Co-Hog以及主动外观模型(AAM)特征的特征。然后,使用所提出的EMFO-DBN进行分类。所提出的EMFO-DBN是通过将指数加权移动平均(EWMA)集成到蛾火焰优化(MFO)算法的更新过程中来设计。所提出的方法的实验已经使用CVL数据库进行了完成,并且所提出的方法分别将其他状态分配为0.98,0.0073和0.0083分别用于精度,远远和FRR的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号