首页> 外文OA文献 >Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, Part I: Numerical model and 2D simulations
【2h】

Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, Part I: Numerical model and 2D simulations

机译:流体催化裂化反应器注入区重油滴-颗粒碰撞的数值研究,第一部分:数值模型和二维模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present paper investigates the collisions between heavy gasoil droplets and solid catalytic particles taking place at conditions realized in Fluid Catalytic Cracking reactors (FCC). The computational model utilizes the Navier-Stokes equations along with the energy conservation and transport of species equations. The VOF methodology is used in order to track the liquid-gas interface, while a dynamic local grid refinement technique is adopted, so that high accuracy is achieved with a relative low computational cost. Phase-change phenomena (evaporation of the heavy gasoil droplet), as well as catalytic cracking surface reactions are taken into account. Physical properties of heavy and light molecular weight hydrocarbons are modelled by representative single component species, while a 2-lump scheme is proposed for the catalytic cracking reactions. The numerical model is firstly validated for the case of a single liquid droplet evaporation inside a hot gaseous medium and impingement onto a flat wall for droplet heating and film boiling conditions. Afterwards, it is utilized for the prediction of single droplet-catalyst collisions inside the FCC injection zone. The numerical results indicate that droplets of similar size to the catalytic particles tend to be levitated more easily by hot catalysts, thus resulting in higher cracking reaction rates/cracking product yield, and limited possibility for liquid pore blocking. For larger sized droplets, the corresponding results indicate that the production of cracking products is not favored, while solid-liquid contact increases. Hotter catalysts promote catalytic cracking reactions and droplet levitation over the catalytic particle, owed to the formation of a thin vapour layer between the liquid and the solid particle.
机译:本文研究了重油馏分与固体催化颗粒之间的碰撞,这些碰撞是在流化催化裂化反应器(FCC)中实现的条件下发生的。该计算模型利用了Navier-Stokes方程以及能量守恒和物种迁移方程。使用VOF方法来跟踪液-气界面,同时采用动态局部网格细化技术,从而以相对较低的计算成本实现了高精度。考虑到相变现象(重油滴的蒸发)以及催化裂化表面反应。重和轻分子量烃的物理性质是通过代表性的单组分物质模拟的,而提出了2-集总方案用于催化裂化反应。首先针对在热气态介质内单个液滴蒸发并冲击液滴加热和薄膜沸腾条件的平坦壁的情况,​​对数值模型进行了验证。然后,将其用于预测FCC注入区域内的单个液滴催化剂碰撞。数值结果表明,与催化剂颗粒大小相似的液滴易于被热催化剂悬浮,从而导致更高的裂化反应速率/裂化产物收率,以及有限的液孔堵塞可能性。对于较大尺寸的液滴,相应的结果表明,裂化产物的生产不受欢迎,而固液接触增加。由于在液体和固体颗粒之间形成薄的蒸汽层,较热的催化剂促进了催化裂化反应和催化颗粒上的液滴悬浮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号