首页> 外文OA文献 >Finite element analysis of limit load and localized failure of structures
【2h】

Finite element analysis of limit load and localized failure of structures

机译:极限载荷和结构局部破坏的有限元分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dissertation deals with limit load and limit ductility analysis of structures by the finite element method. When structure is at its limit load, several structural components behave inelastically, while in the critical parts of the structure, due to localization of inelastic strains, failure of material appears. Localized effects in brittle materials are related to appearance and formation of a large (macro) crack, while failure in ductile materials is governed by localized shear bands. The study of limit load is thus related to modeling both standard inelastic ma- terial effects, as well as modeling of localized failure of material, often reffered to as material softening. Standard inelastic material effects are in this work described with elastoplastic, elas- toviscoplastic and nonlinear elastic material models. All the material models are defined at the level of stress-resultants. Several mathematical approaches and numerical algorithms for modeling localized effects are at hand, but they are often inefficient or inaccurate. Therefor, we use an up-to-date approach, based on a finite element method with embedded discontinuity. We derive new finite element formulations with a quite complex kinematics of the basic elements, as well as rather complex description of discontinuous displacement fields. We derived several finite element formulations for analysis of different structural components. First we present a finite element for limit load analysis of reinforced concrete plates. Stress-resultant elastoplas- tic and elastoviscoplastic plate finite element formulation along with a unified computational procedure that covers both formulations are presented next. Further, a nonlinear shell finite ele- ment, based on a two-surface yield function, that includes both isotropic and kinematic material hardening is presented. The last two finite elements derived in this work are intended to model the localized failure in planar beams and 2D solids. The embedded discontinuity in rotations was built into elastoplastic Euler-Bernoulli beam finite element, and a procedure, based on a precomputed analysis of a part of a structure, by using a refined numerical model, is proposed to obtain the beam constitutive model parameters. Finally, we derive an elastoplastic quadri- lateral two-dimensional finite element formulation with embedded strong discontinuity, whose kinematics can model linear jumps in both normal and tangential displacements along the dis- continuity line. Numerical simulations show, that the derived finite elements, along with the accompanied numerical algorithms, are an efficient and a rather robust tool for limit load and failure analysis of structures. Among other examples, we present a simulation of crack growth in brittle material and a simulation of shear band failure in ductile material. All the computer codes of the finite element formulations presented in this work have been generated through the symbolic programming of the finite element computer code and the expression optimization in AceGen computer program. The performance of these elements has been presented in numerous numerical examples, all performed by the AceFem computer program.
机译:本文通过有限元方法对结构的极限载荷和极限延性进行了分析。当结构处于极限载荷时,几个结构部件会表现出非弹性,而在结构的关键部分,由于非弹性应变的局部性,会出现材料破坏。脆性材料中的局部效应与大裂纹(宏观)的出现和形成有关,而韧性材料的破坏则由局部剪切带控制。因此,极限载荷的研究与标准非弹性材料效应的建模以及材料局部失效的建模(通常随材料软化)相关。在这项工作中,标准的非弹性材料作用是用弹塑性,弹塑性粘塑性和非线性弹性材料模型来描述的。所有材料模型都是在应力结果水平上定义的。有几种数学方法和数值算法可以对局部效果进行建模,但是它们通常是无效或不准确的。因此,我们使用基于嵌入式不连续性的有限元方法的最新方法。我们得出了具有基本运动学的复杂运动学的有限元公式,以及对不连续位移场的相当复杂的描述。我们得出了几种用于分析不同结构部件的有限元公式。首先,我们介绍一个用于钢筋混凝土板极限载荷分析的有限元。应力弹性体和弹塑性板有限元公式以及涵盖这两种公式的统一计算程​​序将在下面介绍。此外,提出了基于两面屈服函数的非线性壳有限元,包括各向同性和运动学材料硬化。这项工作中得出的最后两个有限元旨在对平面梁和2D实体中的局部破坏进行建模。将旋转嵌入的不连续性内置到弹塑性Euler-Bernoulli梁有限元中,并基于对结构的一部分进行预先计算的分析,并使用精确的数值模型,提出了一种获得梁本构模型参数的过程。最后,我们推导了具有嵌入式强不连续性的弹塑性四边形二维有限元公式,其运动学可以模拟沿不连续线在法向和切向位移中的线性跳跃。数值模拟表明,导出的有限元以及伴随的数值算法是一种用于结构极限载荷和破坏分析的有效且相当健壮的工具。在其他示例中,我们提供了脆性材料中裂纹扩展的模拟和韧性材料中剪切带破坏的模拟。通过有限元计算机代码的符号编程以及AceGen计算机程序中的表达式优化,生成了本工作中介绍的有限元公式的所有计算机代码。这些元素的性能已在许多数值示例中进行了介绍,所有示例均由AceFem计算机程序执行。

著录项

  • 作者

    Dujc Jaka;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"sl","name":"Slovene","id":39}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号