首页> 外文OA文献 >Optical Lattice Clock with Spin-1/2 Ytterbium Atoms
【2h】

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms

机译:具有自旋1/2 A原子的光学晶格时钟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An optical lattice clock probes a spectrally narrow electronic transition in an ensemble of optically trapped, laser-cooled atoms, for use as a time and frequency standard. To date, several lattice clocks have been demonstrated with superior stability and accuracy compared to primary frequency standards based on microwave transitions. Yet, the question of which atomic system (including the element and isotope) performs best as a lattice clock remains unsettled. This thesis describes the first detailed investigation of an optical lattice clock using a spin-1/2 isotope of the ytterbium atom. A spin-1/2 system possesses several advantages over higher-spin systems, including a simplified level structure (allowing for straightforward manipulation of the nuclear spin state) and the absence of any tensor light shift from the confining optical lattice. Moreover, the ytterbium atom (Yb) stands among the leading lattice clock candidates, offering a high-performance optical clock with some degree of experimental simplicity. The frequency stability of the Yb clock is highlighted by resolving an ultra-narrow clock spectrum with a full-width at half-maximum of 1 Hz, corresponding to a record quality factor Q = ν0/Δν = 5 × 1014. Moreover, this system can be highly accurate, which is demonstrated by characterizing the Yb clock frequency at the 3 × 10−16 level of fractional uncertainty, with further progress toward a ten-fold improvement also presented. To reach this low level of uncertainty required careful consideration of important systematic errors, including the identification of the Stark-canceling wavelength, where the clock’s sensitivity to the lattice intensity is minimized, a precise determination of the static polarizability of the clock transition, and the measurement and control of atom-atom collisions.
机译:光学晶格时钟在光学捕获的激光冷却原子集合中探测光谱狭窄的电子跃迁,用作时间和频率标准。迄今为止,已经证明了几种晶格时钟,与基于微波转换的主频率标准相比,具有更高的稳定性和准确性。然而,哪个原子系统(包括元素和同位素)作为晶格钟表现最佳仍未解决。本论文描述了使用using原子的自旋1/2同位素的光学晶格时钟的首次详细研究。自旋1/2系统相对于高自旋系统具有几个优势,包括简化的能级结构(允许直接控制核自旋状态)以及不存在任何来自约束光学晶格的张量光移位。此外,原子(Yb)处于领先的晶格时钟候选者之列,从而提供了具有某种程度的实验简便性的高性能光学时钟。通过解析超窄时钟频谱来突出显示Yb时钟的频率稳定性,该频谱的半高全宽为1 Hz,对应于记录质量因子Q =ν0/Δν= 5×1014。此外,该系统可以通过在不确定度的3×10-16水平上表征Yb时钟频率来证明这一点的准确性,并且还提出了十倍的改进。为了达到这种低水平的不确定性,需要仔细考虑重要的系统误差,包括确定Stark消除波长,使时钟对晶格强度的灵敏度最小化,精确确定时钟跃迁的静态极化率以及测量和控制原子-原子碰撞。

著录项

  • 作者

    Lemke Nathan Dean;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号