首页> 外文OA文献 >Semi-Automatic Discovery of Meaningful Ontology from a Relational Database
【2h】

Semi-Automatic Discovery of Meaningful Ontology from a Relational Database

机译:从关系数据库中半自动发现有意义的本体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many legacy relational databases are hidden behind business layers containing semantic in- formation describing the data contained within the tables of the database. With the creation of the Semantic Web some databases have been exposed utilizing this technology, but with a cost. The process of exposing the database to the Semantic Web has not taken o_ because the manual mapping of the database to the ontology is improbable at a large scale, it is a time intensive process, and to create a domain ontology requires an Ontologist and/or domain expert. Many applications and approaches have been presented over the years to help expose these legacy databases to the Semantic Web. None of these solutions has become widely accepted because they translate all the data to Resource Description Framework (RDF). This does not work with legacy databases since other systems are still interacting with that data. In addition, systems that translate the data from legacy database to RDF triples do not scale for large databases because a statement or RDF triple is made for every cell within every table. Thus, the amount of information generated from a legacy system that has terabytes of data grows too large to be store in a triple store. Other systems generate an ontology that is a basic representation of the schema and lacking any type of hierarchy or semantic meaning.This thesis proposes an architecture that will semi-automatically extract a meaningful ontology in a timely manner that can scale to handle large database and expose the database as virtual RDF graph by mapping the extracted domain ontology to the database. This will be accomplish by utilizing mapping rules that will evaluate the schema along with the data within the database and utilize existing knowledge base, like DBpedia, in order to find similar ontology classes that match the structure and data within the database. This hybrid approach to ontology extraction and generation of a mapping between the database and extracted ontology does not require an Ontologist, manual mapping, or time intensive work to be done. In addition, the approach can be applied at a larger scale.
机译:许多遗留关系数据库隐藏在业务层后面,业务层包含描述数据库表中包含的数据的语义信息。随着语义网的创建,一些数据库已经利用该技术公开了,但是成本很高。将数据库公开到语义Web的过程尚未完成,因为大规模地不可能将数据库手动映射到本体,这是一个耗时的过程,并且创建领域本体需要本体专家和/或领域专家。多年来,已经提出了许多应用程序和方法,以帮助将这些遗留数据库公开给语义网。这些解决方案没有一个被广泛接受,因为它们将所有数据转换为资源描述框架(RDF)。这不适用于旧版数据库,因为其他系统仍在与该数据进行交互。另外,将数据从旧数据库转换为RDF三元组的系统不适用于大型数据库,因为对每个表中的每个单元格都执行了一条语句或RDF三元组。因此,从具有TB级数据的传统系统生成的信息量太大,无法存储在三重存储中。其他系统生成的本体是该模式的基本表示,并且缺少任何类型的层次结构或语义。本文提出了一种体系结构,该体系结构将适时地半自动提取有意义的本体,并可以扩展以处理大型数据库并公开通过将提取的领域本体映射到数据库,将数据库作为虚拟RDF图。这将通过使用映射规则来完成,该映射规则将评估架构以及数据库中的数据,并利用现有的知识库(例如DBpedia),以便找到与数据库中的结构和数据匹配的相似本体类。这种用于本体提取和在数据库与所提取的本体之间映射的生成的混合方法不需要进行本体专家,手动映射或耗时的工作。另外,该方法可以大规模应用。

著录项

  • 作者

    Witherspoon David Bruce;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号