首页> 外文OA文献 >Hybrid First-Order System Least-Squares Finite Element Methods With The Application To Stokes And Navier-Stokes Equations
【2h】

Hybrid First-Order System Least-Squares Finite Element Methods With The Application To Stokes And Navier-Stokes Equations

机译:混合一阶系统最小二乘有限元方法及其在Stokes和Navier-Stokes方程中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis combines the FOSLS method with the FOSLL* method to create a Hybrid method. The FOSLS approach minimizes the error, e h = uh − u, over a finite element subspace, [special characters omitted], in the operator norm, [special characters omitted] ||L(uh − u)||. The FOSLL* method looks for an approximation in the range of L*, setting uh = L*wh and choosing wh ∈ [special characters omitted], a standard finite element space. FOSLL* minimizes the L 2 norm of the error over L*([special characters omitted]), that is, [special characters omitted] ||L*wh − u||. FOSLS enjoys a locally sharp, globally reliable, and easily computable a posterior error estimate, while FOSLL* does not.The Hybrid method attempts to retain the best properties of both FOSLS and FOSLL*. This is accomplished by combining the FOSLS functional, the FOSLL* functional, and an intermediate term that draws them together. The Hybrid method produces an approximation, uh, that is nearly the optimal over [special characters omitted] in the graph norm, ||eh[special characters omitted] := ½||eh|| 2 + ||Leh|| 2. The FOSLS and intermediate terms in the Hybrid functional provide a very effective a posteriori error measure.In this dissertation we show that the Hybrid functional is coercive and continuous in graph-like norm with modest coercivity and continuity constants, c0 = 1/3 and c1 = 3; that both ||eh|| and ||L eh|| converge with rates based on standard interpolation bounds; and that, if LL* has full H2-regularity, the L2 error, ||eh||, converges with a full power of the discretization parameter, h, faster than the functional norm. Letting ũh denote the optimum over [special characters omitted] in the graph norm, we also show that if superposition is used, then ||uh − ũ h[special characters omitted] converges two powers of h faster than the functional norm. Numerical tests on are provided to confirm the efficiency of the Hybrid method and effectiveness of the a posteriori error measure.
机译:本文将FOSLS方法与FOSLL *方法结合起来,创建了Hybrid方法。 FOSLS方法在有限元子空间中将误差e h = uh-u最小化,在算子规范中,[省略特殊字符] || L(uh-u)||。 FOSLL *方法寻找L *范围内的近似值,设置uh = L * wh并选择标准有限元空间wh∈[省略特殊字符]。 FOSLL *将L *([省略特殊字符]),即[省略特殊字符] || L * wh − u ||的L 2范数最小化。 FOSLS具有局部敏锐,全局可靠且易于计算的后验误差估计,而FOSLL *则不然。Hybrid方法试图保留FOSLS和FOSLL *的最佳性能。这是通过将FOSLS功能,FOSLL *功能以及将它们组合在一起的中间术语组合在一起来实现的。混合方法产生的近似值uh接近图形规范中的[省略特殊字符] || eh [省略特殊字符]:=½|| eh ||的近似值。 2 + || Leh || 2.混合函数中的FOSLS和中间项提供了一种非常有效的后验误差度量。本文证明了混合函数在具有适度矫顽力和连续性常数的图样范数中具有强制性和连续性,c0 = 1/3并且c1 = 3;两者|| eh ||和|| Leh ||根据标准插值范围收敛速率;并且,如果LL *具有完全的H2正则性,则L2误差|| eh |||会以离散函数h的全部幂收敛,比函数范数更快。让ũh表示图范数中[省略特殊字符]的最优值,我们还表明,如果使用叠加,|| uh-ũh [遗漏特殊字符]的收敛速度比函数范数快两个h。提供了数值测试以确认混合方法的效率和后验误差度量的有效性。

著录项

  • 作者

    Liu Kuo;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号