This paper uses the dynamic factor model framework, which accommodates a large cross-section of macroeconomic time series, for forecasting regional house price inflation. In this study, we forecast house price inflation for five metropolitan areas of South Africa using principal components obtained from 282 quarterly macroeconomic time series in the period 1980:1 to 2006:4. The results, based on the root mean square errors of one to four quarters ahead out‐of‐sample forecasts over the period 2001:1 to 2006:4 indicate that, in the majority of the cases, the Dynamic Factor Model statistically outperforms the vector autoregressive models, using both the classical and the Bayesian treatments. We also consider spatial and non‐spatial specifications. Our results indicate that macroeconomic fundamentals in forecasting house price inflation are important. Copyright (C) 2010 John Wiley & Sons, Ltd.
展开▼
机译:本文使用动态因素模型框架来预测区域房价上涨,该框架可容纳大范围的宏观经济时间序列。在这项研究中,我们使用从1980:1到2006:4期间的282个季度宏观经济时间序列获得的主要成分,预测了南非五个大都市的房价通胀。根据2001:1到2006:4期间样本外预测超前四分之一到四分之一的均方根误差得出的结果表明,在大多数情况下,动态因子模型在统计上优于向量自回归模型,同时使用经典和贝叶斯方法。我们还考虑了空间和非空间规格。我们的结果表明,宏观经济基本面在预测房价通胀中很重要。版权所有(C)2010 John Wiley&Sons,Ltd.
展开▼