首页> 外文OA文献 >Off-line English and Chinese Signature Identification Using Foreground and Background Features
【2h】

Off-line English and Chinese Signature Identification Using Foreground and Background Features

机译:使用前景和背景特征进行离线中英文签名识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the field of information security, the usage of biometrics is growing for user authentication. Automatic signature recognition and verification is one of the biometric techniques, which is only one of several used to verify the identity of individuals. In this paper, a foreground and background based technique is proposed for identification of scripts from bi-lingual (English/Roman and Chinese) off-line signatures. This system will identify whether a claimed signature belongs to the group of English signatures or Chinese signatures. The identification of signatures based on its script is a major contribution for multi-script signature verification. Two background information extraction techniques are used to produce the background components of the signature images. Gradient-based method was used to extract the features of the foreground as well as background components. Zernike Moment feature was also employed on signature samples. Support Vector Machine (SVM) is used as the classifier for signature identification in the proposed system. A database of 1120 (640 English+480 Chinese) signature samples were used for training and 560 (320 English+240 Chinese) signature samples were used for testing the proposed system. An encouraging identification accuracy of 97.70% was obtained using gradient feature from the experiment.
机译:在信息安全领域,用于用户身份验证的生物识别技术的使用正在增长。自动签名识别和验证是生物识别技术之一,仅是用于验证个人身份的几种技术之一。在本文中,提出了一种基于前景和背景的技术,用于从双语(英文/罗马文和中文)离线签名中识别脚本。该系统将识别要求保护的签名是属于英文签名还是中文签名。基于脚本的脚本标识是对多脚本签名验证的主要贡献。两种背景信息提取技术用于生成签名图像的背景成分。基于梯度的方法用于提取前景和背景成分的特征。 Zernike Moment功能也用于签名样本。支持向量机(SVM)用作分类器,用于所提出系统中的签名识别。该数据库使用了1120个(640个英语+480个中文)签名样本进行训练,并使用了560个(320个英语+240个中文)签名样本进行了测试。实验中使用梯度特征获得了令人鼓舞的97.70%的识别准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号