首页> 外文OA文献 >Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor
【2h】

Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor

机译:局部导数模式与局部二值模式:具有高阶局部模式描述符的人脸识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a novel high-order local pattern descriptor, Local Derivative Pattern (LDP), for face recognition. LDP is a general framework to encode directional pattern features based on local derivative variations. The nth-order LDP is proposed to encode the (n-1)th-order local derivative direction variations, which can capture more detailed information than the first-order local pattern used in Local Binary Pattern (LBP). Different from LBP encoding the relationship between the central point and its neighbors, the LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. Both gray-level images and Gabor feature images are used to evaluate the comparative performances of LDP and LBP. Extensive experimental results on FERET, CAS-PEAL, CMU-PIE, Extended Yale B and FRGC databases show that the high-order LDP consistently performs much better than LBP for both face identification and face verification under various conditions.
机译:本文提出了一种新颖的高阶局部模式描述符,即局部衍生模式(LDP),用于人脸识别。 LDP是基于局部导数变化来编码方向性图案特征的通用框架。提出了n阶LDP来编码第(n-1)阶局部导数方向变化,与本地二进制模式(LBP)中使用的一阶局部模式相比,它可以捕获更多详细信息。与LBP编码中心点及其邻居之间的关系不同,LDP模板通过对给定局部区域中包含的各种独特空间关系进行编码来提取高阶局部信息。灰度图像和Gabor特征图像均用于评估LDP和LBP的比较性能。在FERET,CAS-PEAL,CMU-PIE,扩展Yale B和FRGC数据库上的大量实验结果表明,在各种条件下,高阶LDP在面部识别和面部验证方面始终表现出比LBP更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号