首页> 外文OA文献 >Modelling Long-term Bridge Deterioration at Structural Member Level Using Artificial Intelligence Techniques
【2h】

Modelling Long-term Bridge Deterioration at Structural Member Level Using Artificial Intelligence Techniques

机译:使用人工智能技术在结构构件水平上对长期桥梁退化进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient use of public funds for structural integrity of bridge networks requires an effective bridge asset management technology. To achieve this, a reliable deterioration model is essential in any Bridge Management System (BMS). The deterioration rate is calculated based on historical condition ratings obtained from the structural element-level bridge inspections. Although most bridge authorities have previously conducted inspection and maintenance tasks, these past inspection records are incompatible with what are required by a typical BMS as input. Such incompatibility is a major cause for the deficiency of the current BMS outcomes. Artificial Intelligence (AI)-based bridge deterioration model has recently been developed to minimise uncertainties in predicting deterioration of structural bridge members (e.g. beams, piers etc). This model contains two components: (1) using Neural Network-based Backward Prediction Model (BPM) to generate unavailable historical condition ratings; and (2) using Time Delay Neural Network (TDNN) to perform long-term performance prediction of bridge structural members. However new problems have emerged in the process of TDNN prediction. This is because the BPM-generated condition ratings are used together with the actual condition ratings. The incompatibility between the two sets of data produces unreliable prediction outcomes during the TDNN process. This research is thus to develop a new process based on the existing method, thereby overcoming the abovementioned problems. To achieve this, the actual overall condition ratings are replaced by the BPM forward predicted condition ratings. Consequently, the outcome of this study can improve accuracy of long-term bridge deterioration prediction.
机译:有效地使用公共资金来实现桥梁网络的结构完整性需要有效的桥梁资产管理技术。为此,在任何桥梁管理系统(BMS)中,可靠的劣化模型都是必不可少的。劣化率是根据从结构元件级桥梁检查获得的历史条件等级计算得出的。尽管大多数桥梁主管部门以前已经执行过检查和维护任务,但是这些过去的检查记录与典型BMS所要求的输入内容不兼容。这种不兼容性是导致当前BMS结果不足的主要原因。最近开发了基于人工智能(AI)的桥梁劣化模型,以最大程度地减少预测结构桥梁构件(例如梁,墩等)劣化的不确定性。该模型包含两个组件:(1)使用基于神经网络的后向预测模型(BPM)生成不可用的历史条件等级; (2)使用时延神经网络(TDNN)进行桥梁结构构件的长期性能预测。然而,在TDNN预测过程中出现了新的问题。这是因为BPM生成的条件等级与实际条件等级一起使用。两组数据之间的不兼容性会在TDNN过程中产生不可靠的预测结果。因此,本研究是在现有方法的基础上开发一种新方法,从而克服上述问题。为了实现这一目标,实际的总体状况等级由BPM前瞻性预测状况等级代替。因此,这项研究的结果可以提高长期桥梁劣化预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号