首页> 外文OA文献 >Instrumentation of a submillimetre wave hologram compact antenna test range
【2h】

Instrumentation of a submillimetre wave hologram compact antenna test range

机译:亚毫米波全息紧凑型天线测试仪器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents the developed instrumentation and measurement techniques suitable for use in a submillimetre wave compact antenna test range (CATR) for testing high-gain antennas and the quiet-zone quality of the CATR, but also for use in antenna testing with planar near-field scanning at submillimetre wavelengths. The thesis work is focused on improving the phase measurement accuracy and the dynamic range of a commercial submillimetre wave vector network analyser. The full angular scattering properties of radiation absorbing materials (RAM) suitable for the CATR are also analysed in the thesis.A CATR can be used for testing of electrically large antennas at millimetre and submillimetre wavelengths. These high-gain dish antennas are required for spaceborne astronomy and limb sounding of the Earth atmosphere. The most common CATR configuration at millimetre waves uses a reflector as the collimating element. However, the surface accuracy requirement of the reflector becomes very stringent at frequencies over 200 GHz, and the manufacturing of the reflector thus very expensive. An alternative collimator to the reflector is the binary amplitude hologram which is studied in this thesis. The hologram is a planar transmission type device, which is realised as a slot pattern on a metallised dielectric film. The surface (pattern) accuracy requirement of the hologram is less stringent than that of a reflector and it is potentially of lower cost. The amplitude and phase ripples of the CATR quiet-zone field need to be below ± 0.5 dB and ± 5°. The hologram CATR operating at 310 GHz discussed in this thesis is shown to be able to achieve these limits even at submillimetre wavelengths.The amplitude and phase measurement accuracies of a vector network analyser largely depend on the strength of the detected signal. The quiet-zone tests of planned large hologram CATRs require larger dynamic range than is possible with the standard solid-state source configuration, so a phase-lock system for submillimetre wave backward-wave oscillators (BWO) had to be developed. The powerful phase-locked BWO source described in this thesis can improve the dynamic range and the accuracy of the measurement system considerably. The improvement in dynamic range over the standard source based on a frequency-multiplied Gunn oscillator is 16-40 dB over the frequency range of 300-700 GHz.Problems in the phase measurement accuracy arise when the receiver is moved across the quiet-zone area with microwave cables connected to it. The flexing of the cables causes phase errors reaching tens of degrees due to changes in their electrical lengths. The novel phase error measurement and correction system described in this thesis is based on the use of a pilot signal to track changes in the electrical length of a microwave cable. The error analysis shows that phase correction of the detected submillimetre wave signal is possible down to a level of 2° with the constructed system. Accurate operation has also been verified by measurements.The CATR facility needs large quantities of high-performance absorbers. In order to select suitable absorbers, the specular and non-specular reflectivities of several commercially available, state-of-the art absorber materials have been measured between 200-600 GHz. Selected wool and synthetic floor carpet materials were also included in the tests. The results show that specular reflectivities between −40…−50 dB are possible over a considerable angular range when the materials are oriented properly. The best floor carpet materials have reflectivities below −15 dB over a wide angular range and are useful in the less critical areas by reducing backscatter. The published report is the first in the open literature showing the full angular performance of these materials across a wide frequency range.
机译:本文介绍了开发的仪器和测量技术,适用于亚毫米波紧凑型天线测试范围(CATR),用于测试高增益天线和CATR的静区质量,也适用于平面近距离天线测试。在亚毫米波长下进行现场扫描。论文的工作重点是提高商用亚毫米波矢量网络分析仪的相位测量精度和动态范围。本文还分析了适合CATR的辐射吸收材料(RAM)的全角散射特性。CATR可用于测试毫米和亚毫米波长的大型电天线。这些高增益碟形天线是太空天文学和四肢探测地球大气所必需的。毫米波上最常见的CATR配置使用反射镜作为准直元件。但是,反射器的表面精度要求在200 GHz以上的频率下变得非常严格,因此反射器的制造非常昂贵。反射镜的另一种准直仪是二进制振幅全息图,本文对此进行了研究。全息图是平面透射型器件,其被实现为在金属化的介电膜上的缝隙图案。全息图的表面(图案)精度要求不如反射镜严格,并且可能具有较低的成本。 CATR静区场的幅度和相位纹波必须低于±0.5 dB和±5°。本文讨论的在310 GHz下工作的全息CATR甚至在亚毫米波长下也能达到这些限制。矢量网络分析仪的幅度和相位测量精度在很大程度上取决于检测到的信号的强度。计划的大全息CATR的静区测试需要比标准固态源配置更大的动态范围,因此必须开发用于亚毫米波反向波振荡器(BWO)的锁相系统。本文所描述的强大的锁相BWO源可以极大地提高动态范围和测量系统的精度。在300-700 GHz的频率范围内,基于倍频耿氏振荡器的标准信号源的动态范围改善为16-40 dB。当接收器在安静区域内移动时,相位测量精度会出现问题并连接了微波电缆。由于电缆电气长度的变化,电缆的弯曲会导致相位误差达到数十度。本文所描述的新型相位误差测量和校正系统是基于导频信号的使用来跟踪微波电缆电气长度的变化。误差分析表明,使用所构建的系统,可以将检测到的毫米波信号的相位校正降低到2°的水平。测量也证实了其准确的运行。CATR设施需要大量的高性能吸收器。为了选择合适的吸收器,已经在200-600 GHz之间测量了几种最先进的市售吸收器材料的镜面反射率和非镜面反射率。测试中还包括精选的羊毛和合成地板地毯材料。结果表明,当材料正确定向时,在相当大的角度范围内,−40…−50 dB之间的镜面反射率是可能的。最好的地板地毯材料在宽角度范围内的反射率均低于-15dB,可通过减少反向散射在不太关键的区域使用。该公开报告是公开文献中的第一个报告,显示了这些材料在很宽的频率范围内的完整角性能。

著录项

  • 作者

    Säily Jussi;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号