首页> 外文OA文献 >Dynamical properties of single-electron devices and molecular magnets
【2h】

Dynamical properties of single-electron devices and molecular magnets

机译:单电子器件和分子磁体的动力学性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This doctoral dissertation consists of theoretical studies of a number of nanometer-scale structures.In papers [1]-[5], the emphasis is on tiny devices based on conducting materials, i.e., metals and doped semiconductors. Depending on the feature size, geometry, and the electronic density of states, charging effects and quantization of single-electron states may occur. These properties can be utilized to control charge and electric current with the precision of fractions of the electronic charge e - hence the name single-electron device.In paper [6] the focus is on the rich magnetization dynamics of the molecular magnet Mn acetate. At low temperature the molecules of this material acquire a magnetic single-spin ground state with S=10. Interestingly, the quantum tunneling of the molecular spins between the different spin states is manifest even in the magnetization relaxation of macroscopic samples.In order to study or utilize the quantized states in a given nanostructure, this needs to be coupled to some measuring device. The coupling always gives rise to exchange of particles and/or heat between the nanostructure and its environment and the stronger the coupling the more the environment affects the smaller system. This may lead to modifications in the quantized states, interference effects, and dissipation. In some cases, even completely new many-body states such as the Kondo resonances observed in ultrasmall quantum dots are found to emerge. All these effects are of great fundamental as well as of nanoengineering interest.In this thesis, a theoretical model applicable to all the above systems is developed and used. The real-time diagrammatic technique is well suited for describing the various strong-coupling effects between a set of localized states and its fermionic and/or bosonic environment. This approach also allows the description of the nonequilibrium conditions attained in single-electron devices.
机译:该博士论文包括对许多纳米级结构的理论研究。在论文[1]-[5]中,重点是基于导电材料(例如金属和掺杂半导体)的微型器件。根据特征尺寸,几何形状和状态的电子密度,可能会发生充电效应和单电子状态的量化。这些特性可用于控制电荷和电流,其精确度为电子电荷e的分数-因此被称为单电子器件。在论文[6]中,重点是分子磁体乙酸锰的富磁化动力学。在低温下,该材料的分子获得S = 10的磁性单旋基态。有趣的是,即使在宏观样品的磁化弛豫中,分子自旋在不同自旋态之间的量子隧穿也很明显。为了研究或利用给定纳米结构中的量子态,需要将其耦合到某些测量装置上。偶联总是引起纳米结构与其周围环境之间的颗粒和/或热交换,并且偶联越强,环境对较小系统的影响越大。这可能导致量化状态,干扰效应和耗散的修改。在某些情况下,甚至出现了全新的多体态,例如在超小量子点中观察到的近藤共振。所有这些效应具有重要的基础和纳米工程意义。在本文中,开发并使用了适用于上述所有系统的理论模型。实时图表技术非常适合描述一组局部状态与其铁离子和/或玻色子环境之间的各种强耦合效应。这种方法还允许描述单电子器件中达到的非平衡条件。

著录项

  • 作者

    Pohjola Teemu;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号