首页> 外文OA文献 >An investigation of the effect of physical and chemical variables on bubble generation and coalescence in laboratory scale flotation cells
【2h】

An investigation of the effect of physical and chemical variables on bubble generation and coalescence in laboratory scale flotation cells

机译:物理和化学变量对实验室规模浮选池中气泡产生和聚结的影响的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new technique for measuring bubble size in laboratory scale flotation cells was developed. A method of sampling and photographing bubbles from a flotation cell was combined with modern methods of image processing and analysis. The technique is capable of sizing accurately a large number of bubbles by exposing a stream of bubbles to a progressive scan camera.The technique was used to study the effect of several physical and chemical variables on bubbles size in laboratory scale flotation cells. Three mechanically agitated Outokumpu flotation cells were used in the tests, the size of the cells being 50 dm3, 70 dm3 and 265 dm3, respectively. The last mentioned was especially designed and constructed for this study. The cells were operated under batch conditions. The hydrodynamic conditions prevailing in the cells were modified mainly by altering the impeller speed and aeration conditions, as well as the frother concentration.An extensive study of the effect of frother concentration on the bubbles generated in flotation cells was carried out. A series of common flotation frothers, DF-200, DF-250 and DF-1012, was chosen to test the effect of frothers on bubble coalescence and the bubble break-up process. The experimental tests revealed that bubble size strongly depends on frother concentration. With increasing frother concentration, the degree of bubble coalescence decreases, while at a particular frother concentration, known as the Critical Coalescence Concentration (CCC), bubble coalescence is totally hindered. The experimental results also indicate that frothers appear to affect the break-up process or bubble generation. While the DF-200 frother, characterized by much larger CCC values than DF-1012 and DF-250, has the ability to produce finer bubbles at concentrations exceeding the CCC value, the bubbles generated in the DF-1012 solutions at concentrations exceeding CCC are much larger.The aeration rate has a profound impact on bubble generation; bubble size increases with an increase of the air flow rate entering the flotation cell. The aeration rate seems to determine to a large extent the size, shape and behaviour of the aerated cavities formed behind the blades of the rotor of the cell. These gassed cavities appear to control the mechanism of bubble generation in a flotation cell. The formation and behaviour of aerated cavities behind the Outokumpu rotor was examined using a high-speed camera.While the maximum stable bubble diameter seems to characterize the bubble break-up process adequately, the Sauter mean bubble diameter and the number bubble mean diameter turned out not to be very sensitive to the changes in impeller speed. These two diameters are not always able to reveal adequately differences between bubble-size distributions.Since bubble coalescence can be entirely prevented in the cell at frother concentrations exceeding the CCC values, it was possible to assess the impact of two commercial rotor/stator mechanisms on bubble generation. With the aid of a new sensor developed for measuring continuously local gas velocity, a series of tests was conducted to study how efficiently the incoming air is dispersed throughout the volume of the cell by the rotor/stator mechanism.
机译:开发了一种用于测量实验室规模浮选池中气泡大小的新技术。将浮选池中气泡的采样和照相方法与现代图像处理和分析方法相结合。该技术能够通过将气泡流暴露于逐行扫描相机来准确地确定大量气泡的大小。该技术用于研究几种物理和化学变量对实验室规模浮选池中气泡大小的影响。测试中使用了三个机械搅拌的Outokumpu浮选池,池的大小分别为50 dm3、70 dm3和265 dm3。最后提到的是专门为该研究设计和建造的。电池在间歇条件下运行。主要通过改变叶轮速度和曝气条件以及起泡浓度来改变池中普遍存在的流体力学条件。广泛研究了起泡浓度对浮选池中产生的气泡的影响。选择了一系列常见的浮选起泡器DF-200,DF-250和DF-1012,以测试起泡器对气泡聚结和气泡破裂过程的影响。实验测试表明,气泡大小在很大程度上取决于起泡剂浓度。随着起泡剂浓度的增加,气泡聚结的程度降低,而在特定的起泡剂浓度(称为临界聚结浓度(CCC))下,气泡聚结被完全阻止。实验结果还表明,起泡剂似乎会影响破裂过程或气泡的产生。尽管DF-200起泡剂的CCC值比DF-1012和DF-250大得多,但能够产生浓度超过CCC值的细小气泡,而DF-1012溶液中产生的气泡却超过CCC浓度。曝气速率对气泡的产生有深远的影响;气泡大小随着进入浮选池的空气流量的增加而增加。曝气速率似乎在很大程度上决定了形成在电池转子叶片后面的充气腔的尺寸,形状和性能。这些充气腔似乎可以控制浮选槽中气泡的生成机理。使用高速相机检查了奥托昆普转子后充气腔的形成和行为,尽管最大稳定气泡直径似乎足以表征气泡破裂过程,但索特(Sauter)平均气泡直径和数量均值气泡平均直径不要对叶轮速度的变化非常敏感。这两个直径并不总是能够显示出气泡大小分布之间的充分差异。由于可以完全防止气泡浓度超过CCC值时气泡在电池中的聚结,因此有可能评估两种商业转子/定子机制对气泡的影响。气泡的产生。借助于开发的用于连续测量局部气体速度的新型传感器,进行了一系列测试,以研究进入的空气如何通过转子/定子机构有效地分散到整个电池单元中。

著录项

  • 作者

    Grau Rodrigo A.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号