首页> 外文OA文献 >Methodology for utilising prior knowledge in constructing data-based process monitoring systems with an application to a dearomatisation process
【2h】

Methodology for utilising prior knowledge in constructing data-based process monitoring systems with an application to a dearomatisation process

机译:利用先验知识构建基于数据的过程监控系统的方法,并将其应用于脱芳香化过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global competition is forcing the process industry to optimise the production processes. One key factor in optimisation is effective process state monitoring and fault detection. Another motivator to improve process monitoring systems are the substantial losses of revenue resulting from abnormal process conditions. It has been estimated that the petrochemical industry in the US alone loses 20 billion dollars per year because of unoptimal handling of abnormal process situations. Traditionally, the monitoring systems have been based on first principle models, constructed by specialists with process specific expertise. In contrast, the use of data-based modelling methods require less expertise and offers the possibilities to build and update the monitoring models in a short period of time, thus allowing more efficient development of monitoring systems. The aims of this thesis are to augment data-driven modelling with existing process knowledge, to combine different data-based modelling methods, and to utilise calculated variables in modelling in order to improve the accuracy of fault detection and identification (FDI) and to provide all necessary diagnostic information for fault tolerant control. The suggested improvements are included in a methodology for setting up FDI systems. The methodology has been tested by building FDI systems for detecting faults in two online quality analysers in a simulated and in a real industrial dearomatisation process at the Naantali oil refinery (Neste Oil Oyj). In developing an FDI system, background information about the user requirements for the monitoring system is first acquired. The information is then analysed and suitable modelling methods are selected according to the guidelines given in the methodology. Second, the process data are prepared for the modelling methods and augmented with appropriate calculated variables. Next, the input variable sets are determined with the introduced method and the models are constructed. After the estimation accuracy of the models is validated, the values of the fault detection parameters are determined. Finally, the fault detection performance of the system is tested. The system was evaluated during a period of one month at the Naantali refinery in 2007. The monitoring system was able to detect all the introduced analyser faults and to provide the information needed for a fault tolerant control system, thus validating the methodology. The effects of a number of suggested improvements in data-based modelling are analysed by means of a comparison study.
机译:全球竞争迫使加工业优化生产流程。优化的一个关键因素是有效的过程状态监视和故障检测。改进过程监控系统的另一个动机是由于异常过程条件导致的大量收入损失。据估计,由于对异常过程情况的不最佳处理,仅在美国石化行业每年就损失200亿美元。传统上,监控系统基于第一原理模型,这些模型是由具有过程特定专业知识的专家构建的。相反,基于数据的建模方法的使用需要较少的专业知识,并提供了在短时间内建立和更新监视模型的可能性,从而可以更有效地开发监视系统。本文的目的是利用现有的过程知识来扩展数据驱动的建模,结合不同的基于数据的建模方法,并在建模中利用计算出的变量,以提高故障检测和识别(FDI)的准确性,并提供用于容错控制的所有必要诊断信息。建议的改进包括在建立外国直接投资系统的方法中。该方法已通过建立FDI系统进行测试,该系统可在Naantali炼油厂(Neste Oil Oyj)的模拟和实际工业脱芳香化过程中,在两个在线质量分析仪中检测故障。在开发FDI系统时,首先需要获取有关监视系统用户需求的背景信息。然后对信息进行分析,并根据方法中给出的指导原则选择合适的建模方法。其次,为建模方法准备过程数据并添加适当的计算变量。接下来,使用引入的方法确定输入变量集并构建模型。在验证模型的估计精度之后,确定故障检测参数的值。最后,测试了系统的故障检测性能。该系统在2007年的Naantali炼油厂进行了为期一个月的评估。该监控系统能够检测所有引入的分析仪故障,并提供容错控制系统所需的信息,从而验证了方法学。通过比较研究分析了许多建议的基于数据的建模改进的效果。

著录项

  • 作者

    Vermasvuori Mikko;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号