首页> 外文OA文献 >Disappearance of stretch-induced wrinkles of thin sheets: a study of orthotropic films
【2h】

Disappearance of stretch-induced wrinkles of thin sheets: a study of orthotropic films

机译:拉伸引起的薄片皱纹消失:正交各向异性薄膜的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A recent paper [Healey et al., J. Nonlin. Sci., 2013, 23, 777-805.] predicted the disappearance of the stretch-induced wrinkled pattern of thin, clamped, elastic sheets by numerical simulation of the Föppl-von Kármán equations extended to the finite in-plane strain regime. It has also been revealed that for some aspect ratios of the rectangular domain wrinkles do not occur at all regardless of the applied extension. To verify these predictionsudwe carried out experiments on thin (20 µm thick adhesive covered) elastomer sheets with different aspect ratios under displacement controlled pull tests. We found that the wrinkled shapes are strongly influenced by the emergingudorthotropy during the extension. To carry out quantitative comparisons we abandoned the assumption about material isotropy and derived the governing equations for an orthotropic medium. In this way we found good agreementudbetween numerical simulations and experimental data.ududAnalysis of the negativity of the second Piola-Kirchhoff stress tensor showed that the critical stretch for a bifurcation point at which the wrinkles disappear must be finite for any aspect ratio. On the other hand, thereudis no such a bound for the aspect ratio as a bifurcation parameter. Physically this manifests as complicated wrinkled patterns with more than one highly wrinkled zones on the surface in case of elongated rectangles. These arrangements have been found both numerically and experimentally. These findings also support the new, finite strain model, since the Föppl-von Kármán equations based on infinitesimal strains do not exhibit such a behavior.
机译:最近的论文[Healey等,J.Nonlin。 Sci。,2013,23,777-805。]通过扩展到有限平面应变模式的Föppl-vonKármán方程的数值模拟,预测了拉伸引起的薄的,夹紧的弹性片材的起皱图案的消失。还已经揭示出,对于矩形畴的某些纵横比,无论所施加的延伸如何,都根本不会出现皱纹。为了验证这些预测,我们在位移控制的拉力试验下对具有不同长宽比的薄(20 µm厚的粘合剂覆盖)弹性体片材进行了实验。我们发现皱纹的形状在延伸过程中受到新兴的正交各向异性的强烈影响。为了进行定量比较,我们放弃了关于材料各向同性的假设,并推导了正交各向异性介质的控制方程。这样,我们在数值模拟和实验数据之间找到了很好的一致性。 ud ud对第二个Piola-Kirchhoff应力张量的负性的分析表明,对于皱纹消失的分叉点,临界拉伸必须在任何方面都是有限的比。另一方面,没有将宽高比的限制作为分叉参数。在物理上,这表现为复杂的皱纹图案,在长矩形的情况下,在表面上具有多个高皱纹区域。这些布置已经在数值和实验上找到。这些发现也支持新的有限应变模型,因为基于无穷小应​​变的Föppl-vonKármán方程不表现出这种行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号