首页> 外文OA文献 >Stochastic analysis for Poisson point processes: Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry
【2h】

Stochastic analysis for Poisson point processes: Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry

机译:泊松点过程的随机分析:Malliavin演算,Wiener-Itô混沌展开和随机几何

摘要

Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.
机译:随机几何是数学的一个分支,研究与随机配置有关的几何结构,例如随机图,平铺图和镶嵌图。由于其与立体学和空间统计的紧密联系,因此该领域的结果与许多重要应用(例如,进行电信网络的数学建模和统计分析,地统计学和图像分析。近年来(主要是由于作者及其合作者的推动力),在随机几何形状和Malliavin微积分之间建立了强大的联系,后者是基于无穷维微分算子性质的概率技术的集合。这尤其导致了针对高维几何对象的大量新的定量极限定理的发现。这本独特的书展示了在这个快速发展的领域中由主要演员撰写的权威调查的有机集合,提供了其多方面的严谨而生动的介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号