首页> 外文OA文献 >Wavelength limits on isobaricity of perturbations in a thermally unstable radiatively cooling medium
【2h】

Wavelength limits on isobaricity of perturbations in a thermally unstable radiatively cooling medium

机译:热不稳定辐射冷却介质中扰动等压性的波长限制

摘要

Nonlinear evolution of one-dimensional planar perturbations in an optically thin radiatively cooling medium in the long-wavelength limit is studied numerically. The accepted cooling function generates in thermal equilibrium a bistable equation of state $P(ho)$. The unperturbed state is taken close to the upper (low-density) unstable state with infinite compressibility ($dP/dho= 0$). The evolution is shown to proceed in three different stages. At first stage, pressure and density set in the equilibrium equation of state, and velocity profile steepens gradually as in case of pressure-free flows. At second stage, those regions of the flow where anomalous pressure (i.e. with negative compressibility) holds, create velocity profile more sharp than in pressure-free case, which in turn results in formation of a very narrow (short-wavelength) region where gas separates the equilibrium equation of state and pressure equilibrium sets in rapidly. On this stage, variation in pressure between narrow dense region and extended environment does not exceed more than 0.01 of the unperturbed value. On third stage, gas in the short-wavelength region reaches the second (high-density) stable state, and pressure balance establishes through the flow with pressure equal to the one in the unperturbed state. In external (long-wavelength) regions, gas forms slow isobaric inflow toward the short-wavelength layer. The duration of these stages decreases when the ratio of the acoustic time to the radiative cooling time increases. Limits in which nonlinear evolution of thermally unstable long-wavelength perturbations develops in isobaric regime are obtained.
机译:数值研究了在长波长范围内光学薄的辐射冷却介质中一维平面扰动的非线性演化。所接受的冷却函数在热平衡中生成状态$ P( rho)$的双稳态方程。不受干扰的状态接近于具有无限可压缩性的上部(低密度)不稳定状态($ dP / d rho = 0 $)。演变过程显示为在三个不同阶段进行。在第一阶段,压力和密度在平衡状态方程中设定,并且速度分布在无压力流动的情况下逐渐变陡。在第二阶段,与没有压力的情况相比,异常压力(即具有负可压缩性)的流动区域会产生更快的速度分布,进而导致形成非常狭窄的(短波)区域快速分离状态平衡方程和压力平衡集。在此阶段,狭窄的密集区域与扩展环境之间的压力变化不会超过未扰动值的0.01。在第三阶段,短波长区域中的气体达到第二(高密度)稳定状态,并且压力的平衡通过压力等于未扰动状态下的压力的流动而建立。在外部(长波)区域中,气体会形成向短波层的缓慢等压流。当声时间与辐射冷却时间之比增加时,这些阶段的持续时间减少。获得了在等压状态下热不稳定长波扰动发生非线性演化的极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号