首页> 外文OA文献 >Initial Hypersurface Formulation: Hamilton-Jacobi Theory for Strongly Coupled Gravitational Systems
【2h】

Initial Hypersurface Formulation: Hamilton-Jacobi Theory for Strongly Coupled Gravitational Systems

机译:初始超曲面公式化:强耦合引力系统的Hamilton-Jacobi理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Strongly coupled gravitational systems describe Einstein gravity and matter in the limit that Newton's constant G is assumed to be very large. The nonlinear evolution of these systems may be solved analytically in the classical and semiclassical limits by employing a Green function analysis. Using functional methods in a Hamilton-Jacobi setting, one may compute the generating functional (`the phase of the wavefunctional') which satisfies both the energy constraint and the momentum constraint. Previous results are extended to encompass the imposition of an arbitrary initial hypersurface. A Lagrange multiplier in the generating functional restricts the initial fields, and also allows one to formulate the energy constraint on the initial hypersurface. Classical evolution follows as a result of minimizing the generating functional with respect to the initial fields. Examples are given describing Einstein gravity interacting with either a dust field and/or a scalar field. Green functions are explicitly determined for (1) gravity, dust, a scalar field and a cosmological constant and (2) gravity and a scalar field interacting with an exponential potential. This formalism is useful in solving problems of cosmology and of gravitational collapse.
机译:强耦合引力系统描述了爱因斯坦引力和物质,其极限是假设牛顿常数G非常大。这些系统的非线性演化可以通过采用格林函数分析在经典和半经典范围内解析解决。使用汉密尔顿-雅各比设置中的函数方法,可以计算出满足能量约束和动量约束的生成函数(“波函数的相位”)。先前的结果已扩展到涵盖任意初始超曲面的施加。生成函数中的拉格朗日乘数限制了初始场,并且还允许人们对初始超曲面制定能量约束。作为相对于初始场最小化生成函数的结果,经典进化随之而来。给出了描述爱因斯坦重力与尘埃场和/或标量场相互作用的示例。为(1)重力,尘埃,标量场和宇宙常数以及(2)与指数势相互作用的重力和标量场明确确定了格林函数。这种形式主义对解决宇宙学和引力崩溃的问题很有用。

著录项

  • 作者

    Salopek, D S;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号