首页> 外文OA文献 >Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques
【2h】

Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques

机译:利用叶片结构变异和模式识别技术对茶花(茶花科)物种进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined with supervised pattern recognition techniques have not been previously explored. We present results of using leaf morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach, Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect. Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM show excellent classification results for genus Camellia with DAN2's accuracy of 97.92% and 91.11% for training and testing data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia species.
机译:叶子特征已被成功地用于对茶花(Theaceae)种类进行分类。但是,叶子字符与有监督的模式识别技术相结合以前尚未探索过。我们介绍了使用来自茶花属的五个部分的93个物种的叶片形态和脉络特征来评估几种监督模式识别技术进行分类并比较其准确性的结果。聚类方法,学习矢量量化神经网络(LVQ-ANN),人工神经网络动态体系结构(DAN2)和C支持向量机(SVM)用来从茶花属的五个部分中区分出93种(11种)。 Furfuracea,16个在山茶属中,12个在结核属中,34个在山茶属中,20个在Theopsis中。 DAN2和SVM对茶花属显示出出色的分类结果,DAN2在训练和测试数据集上的准确度分别为97.92%和91.11%。训练和测试的RBF-SVM结果分别为97.92%和97.78%,提供了最佳的分类准确性。基于叶片结构数据的分层树状图已经确认了先前提出的五个部分的形态分类。总体结果表明,使用监督模式识别技术(尤其是DAN2和SVM判别方法)的基于叶结构的数据分析非常适合识别茶​​花树种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号