首页> 外文OA文献 >A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass
【2h】

A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass

机译:纤维素生物质生产燃料和化学品的新型生化途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.
机译:具有酶水解作用的常规生化平台涉及五个关键步骤:预处理,纤维素酶生产,酶水解,发酵和产物回收。糖是作为活性中间体生产的,用于随后发酵为燃料和化学品。在此,提出了另一种生化途径。预处理,酶促水解和纤维素酶生产被合并为一个步骤,称为合并好氧处理,糖醛酸被生产为通过发酵生产生物燃料的反应性中间体。在这项研究中,我们证明了新的途径中酶促水解和纤维素酶生产步骤的合并的可行性,该新途径使用Neurospora crassa作为模型微生物并将纤维素转化为乙醇作为模型系统。我们打算证明这两个假设:1)可以通过减少β-葡萄糖苷酶的产生和增强纤维二糖脱氢酶的产生来引导纤维素产生纤维素。 2)纤维蛋白酸盐的两种水解产物葡萄糖和葡萄糖酸盐都可以用作乙醇和其他化学生产的碳源。我们的结果表明,敲除多个拷贝的β-葡萄糖苷酶基因可从纤维素中产生纤维蛋白酸盐,而不会损害纤维素的水解速率。通过添加外源性纤维二糖脱氢酶模拟纤维二糖脱氢酶的过表达导致更多的纤维二糖生成。纤维素KOFO 11的两种水解产物:葡萄糖和葡萄糖酸酯均可用于高效生产乙醇。它们同时用于葡萄糖和葡萄糖酸盐的共同发酵中。葡萄糖酸盐的使用甚至比葡萄糖更快。结果支持了两个假设的可行性,这两个假设为拟议的新路线奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号