首页> 外文期刊>Current opinion in biotechnology >Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass
【24h】

Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass

机译:生物质生产燃料和化学品的异质和生化催化的整合

获取原文
获取原文并翻译 | 示例
           

摘要

The past decade has seen significant government and private investment in fundamental research and process development for the production of biofuels and chemicals from lignocellulosic biomass-derived sugars. This investment has helped create new metabolic engineering and synthetic biology approaches, novel homogeneous and heterogeneous catalysts, and chemical and biological routes that convert sugars, lignin, and waste products such as glycerol into hydrocarbon fuels and valuable chemicals. With the exception of ethanol, economical biofuels processes have yet to be realized. A potentially viable way forward is the integration of biological and chemical catalysis into processes that exploit the inherent advantages of each technology while circumventing their disadvantages. Microbial fermentation excels at converting sugars from low-cost raw materials streams into simple alcohols, acids, and other reactive intermediates that can be condensed into highly reduced, long and branched chain hydrocarbons and other industrially useful compounds. Chemical catalysis most often requires clean feed streams to avoid catalyst deactivation, but the chemical and petroleum industries have developed large scale processes for C-C coupling, hydrogenation, and deoxygenation that are driven by low grade heat and low-cost feeds such as hydrogen derived from natural gas. In this context, we suggest that there is a reasonably clear route to the high yield synthesis of biofuels from biomass-or otherwise derived-fermentable sugars: the microbial production of reactive intermediates that can be extracted or separated into clean feed stream for upgrading by chemical catalysis. When coupled with new metabolic engineering strategies that maximize carbon and energy yields during fermentation, biomass-to-fuels processes may yet be realized.
机译:过去的十年已经看到了从木质纤维素生物量衍生的糖的生物燃料和化学品生产的基本研究和过程开发中的重要政府和私人投资。该投资有助于创造新的新代谢工程和合成生物学方法,新型均质和异质催化剂,以及将糖,木质素和废物如甘油转化为碳氢化合物燃料和有价值的化学品的化学和生物途径。除了乙醇外,还尚未实现经济的生物燃料过程。前进的潜在可行的方式是将生物和化学催化的整合到利用各种技术的固有优势的过程中,同时避免它们的缺点。微生物发酵源于将低成本原料流的糖转化为简单的醇,酸和其他反应性中间体,可以冷凝成高度减少,长和支链碳氢化合物和其他工业上有用的化合物。化学催化通常需要清洁的进料流以避免催化剂停用,但化学和石油工业已经开发了由低级热和低成本饲料驱动的CC偶联,氢化和脱氧的大规模方法,例如衍生自天然的氢气气体。在这种情况下,我们建议在生物质 - 或其他衍生的可发酵的糖中具有合理清晰的途径,从生物质 - 或其他可发酵的糖中:可以用化学物质萃取或分离成净化物流的反应性中间体的微生物生产以进行化学物质催化。当加上发酵过程中最大化碳和能源产量的新代谢工程策略时,可以实现生物质 - 燃料过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号