首页> 外文OA文献 >Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth.
【2h】

Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth.

机译:电场诱导阴沟肠杆菌,大肠杆菌和枯草芽孢杆菌细胞弯曲生长:对电流变和细菌生长的机制的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Directional growth in response to electric fields (galvanotropism) is known for eukaryotic cells as diverse as fibroblasts, neurons, algae, and fungal hyphae. The mechanism is not understood, but all proposals invoke actin either directly or indirectly. We applied electric fields to bacteria (which are inherently free of actin) to determine whether actin was essential for galvanotropism. Field-treated (but not control) Enterobacter cloacae and Escherichia coli cells curved rapidly toward the anode. The response was both field strength and pH dependent. The direction of curvature was reversed upon reversal of field polarity. The directional growth was not due to passive bending of the cells or to field-induced gradients of tropic substances in the medium. Field-treated Bacillus subtilis cells also curved, but the threshold was much higher than for E. cloacae or E. coli. Since the curved morphology must reflect spatial differences in the rates of cell wall synthesis and degradation, we looked for regions of active wall growth. Experiments in which the cells were decorated with latex beads revealed that the anode-facing ends of cells grew faster than the cathode-facing ends of the same cells. Inhibitors of cell wall synthesis caused spheroplasts to form on the convex regions of field-treated cells, suggesting that the initial curvature resulted from enhanced growth of cathode-facing regions. Our results indicate that an electric field modulates wall growth spatially and that the mechanism may involve differential stimulation of wall growth in both anode- and cathode-facing regions. Electric fields may therefore serve as valuable tools for studies of bacterial wall growth. Use of specific E. coli mutants may allow dissection of the galvanotropic mechanism at the molecular level.
机译:已知响应于电场的定向生长(趋向性)对于真核细胞如成纤维细胞,神经元,藻类和真菌菌丝是多样的。该机制尚不明确,但是所有提议都直接或间接调用actin。我们将电场施加到细菌(其固有不含肌动蛋白)上,以确定肌动蛋白是否对电流变迁至关重要。经现场处理(但不是对照)的阴沟肠杆菌和大肠杆菌细胞迅速向阳极弯曲。响应既取决于场强,又取决于pH。场极性相反时,曲率方向也相反。方向性生长不是由于细胞的被动弯曲,也不是由于培养基中磁场诱导的热带物质梯度引起的。经现场处理的枯草芽孢杆菌细胞也弯曲,但阈值远高于阴沟肠杆菌或大肠杆菌。由于弯曲的形态必须反映细胞壁合成和降解速率的空间差异,因此我们寻找活性壁生长的区域。用乳胶珠装饰电池的实验表明,电池的阳极端比相同电池的阴极端增长更快。细胞壁合成的抑制剂导致原生质球在经过电场处理的细胞的凸形区域上形成,这表明初始曲率是由面向阴极的区域增强的生长引起的。我们的结果表明,电场在空间上调节壁的生长,并且该机制可能涉及在面向阳极和面对阴极的区域中对壁生长的不同刺激。因此,电场可以作为研究细菌壁生长的有价值的工具。使用特定的大肠杆菌突变体可以在分子水平上分离电流变机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号