首页> 外文OA文献 >The spatial association between community air pollution and mortality: a new method of analyzing correlated geographic cohort data.
【2h】

The spatial association between community air pollution and mortality: a new method of analyzing correlated geographic cohort data.

机译:社区空气污染与死亡率之间的空间关联:一种分析相关地理队列数据的新方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new statistical model for linking spatial variation in ambient air pollution to mortality. The model incorporates risk factors measured at the individual level, such as smoking, and at the spatial level, such as air pollution. We demonstrate that the spatial autocorrelation in community mortality rates, an indication of not fully characterizing potentially confounding risk factors to the air pollution-mortality association, can be accounted for through the inclusion of location in the model assessing the effects of air pollution on mortality. Our methods are illustrated with an analysis of the American Cancer Society cohort to determine whether all cause mortality is associated with concentrations of sulfate particles. The relative risk associated with a 4.2 microg/m(3) interquartile range of sulfate distribution for all causes of death was 1.051 (95% confidence interval 1.036-1.066) based on the Cox proportional hazards survival model, assuming subjects were statistically independent. Inclusion of community-based random effects yielded a relative risk of 1.055 (1.033, 1.077), which represented a doubling in the residual variance compared to that estimated by the Cox model. Residuals from the random-effects model displayed strong evidence of spatial autocorrelation (p = 0.0052). Further inclusion of a location surface reduced the sulfate relative risk and the evidence for autocorrelation as the complexity of the location surface increased, with a range in relative risks of 1.055-1.035. We conclude that these data display both extravariation and spatial autocorrelation, characteristics not captured by the Cox survival model. Failure to account for extravariation and spatial autocorrelation can lead to an understatement of the uncertainty of the air pollution association with mortality.
机译:我们提出了一种新的统计模型,用于将环境空气污染的空间变化与死亡率联系起来。该模型包含了在个体水平(例如吸烟)和空间水平(例如空气污染)下测量的风险因素。我们证明,社区死亡率的空间自相关性(未完全表征与空气污染-死亡率关联的潜在混杂风险因素的迹象)可以通过在模型中包括位置来评估空气污染对死亡率的影响来说明。通过对美国癌症协会队列的分析来说明我们的方法,以确定所有原因的死亡率是否与硫酸盐颗粒的浓度有关。根据Cox比例风险生存模型,假设受试者在统计学上是独立的,与所有死亡原因的硫酸盐分布在4.2 microg / m(3)的四分位数硫酸盐分布范围相关的相对风险为1.051(95%置信区间1.036-1.066)。纳入基于社区的随机效应产生的相对风险为1.055(1.033,1.077),与Cox模型所估计的相比,这意味着残留方差增加了一倍。来自随机效应模型的残差显示出空间自相关的有力证据(p = 0.0052)。随着位置表面复杂性的增加,位置表面的进一步包含降低了硫酸盐的相对风险和自相关的证据,相对风险范围为1.055-1.035。我们得出的结论是,这些数据同时显示了外变和空间自相关,这些特征没有被Cox生存模型捕获。不能考虑额外变化和空间自相关可能导致低估了空气污染与死亡率的关联的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号