首页> 外文OA文献 >Prediction of the disulfide-bonding state of cysteines in proteins at 88% accuracy
【2h】

Prediction of the disulfide-bonding state of cysteines in proteins at 88% accuracy

机译:以88%的精度预测蛋白质中半胱氨酸的二硫键状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The task of predicting the cysteine-bonding state in proteins starting from the residue chain is addressed by implementing a new hybrid system that combines a neural network and a hidden Markov model (hidden neural network). Training is performed using 4136 cysteine-containing segments extracted from 969 nonhomologous proteins of well-resolved three-dimensional structure. After a 20-fold cross-validation procedure, the efficiency of the prediction scores as high as 88% and 84%, when measured on cysteine and protein basis, respectively. These results outperform previously described methods for the same task.
机译:通过实施一个新的混合系统,将神经网络和隐马尔可夫模型(隐藏神经网络)结合起来,可以预测从残基链开始的蛋白质中半胱氨酸键的状态。训练是使用从136个具有良好解析三维结构的非同源蛋白质中提取的4136个含半胱氨酸的片段进行的。经过20倍的交叉验证程序后,以半胱氨酸和蛋白质为基础进行测量时,预测的效率分别高达88%和84%。这些结果优于先前描述的用于同一任务的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号