首页> 外文OA文献 >Models from experiments: combinatorial drug perturbations of cancer cells
【2h】

Models from experiments: combinatorial drug perturbations of cancer cells

机译:实验模型:癌细胞的组合药物扰动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a novel method for deriving network models from molecular profiles of perturbed cellular systems. The network models aim to predict quantitative outcomes of combinatorial perturbations, such as drug pair treatments or multiple genetic alterations. Mathematically, we represent the system by a set of nodes, representing molecular concentrations or cellular processes, a perturbation vector and an interaction matrix. After perturbation, the system evolves in time according to differential equations with built-in nonlinearity, similar to Hopfield networks, capable of representing epistasis and saturation effects. For a particular set of experiments, we derive the interaction matrix by minimizing a composite error function, aiming at accuracy of prediction and simplicity of network structure. To evaluate the predictive potential of the method, we performed 21 drug pair treatment experiments in a human breast cancer cell line (MCF7) with observation of phospho-proteins and cell cycle markers. The best derived network model rediscovered known interactions and contained interesting predictions. Possible applications include the discovery of regulatory interactions, the design of targeted combination therapies and the engineering of molecular biological networks.
机译:我们提出了一种从扰动的细胞系统的分子概况中得出网络模型的新颖方法。网络模型旨在预测组合扰动的定量结果,例如药物对治疗或多种基因改变。在数学上,我们用一组节点表示系统,这些节点表示分子浓度或细胞过程,扰动向量和相互作用矩阵。扰动后,系统会根据具有内置非线性的微分方程及时发展,类似于Hopfield网络,它能够表示上位性和饱和效应。对于一组特定的实验,我们通过最小化复合误差函数来导出交互矩阵,目的是预测的准确性和网络结构的简单性。为了评估该方法的预测潜力,我们在人乳腺癌细胞系(MCF7)中进行了21种药物对治疗实验,并观察了磷酸蛋白和细胞周期标志物。最佳派生网络模型重新发现了已知的相互作用并包含有趣的预测。可能的应用包括监管相互作用的发现,靶向联合疗法的设计以及分子生物学网络的工程设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号