首页> 外文OA文献 >Regulation of fructose metabolism and polymer synthesis by Fusobacterium nucleatum ATCC 10953.
【2h】

Regulation of fructose metabolism and polymer synthesis by Fusobacterium nucleatum ATCC 10953.

机译:核梭状芽胞杆菌ATCC 10953对果糖代谢和聚合物合成的调节。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy for the anaerobic growth of Fusobacterium nucleatum ATCC 10953 can be derived from the fermentation of sugar (fructose) or amino acid (glutamate). During growth on fructose, the cells formed large intracellular granules which after extraction yielded glucose by either acid or enzymatic hydrolysis. The endogenous polymer was subsequently metabolized, and after overnight incubation of the cells in buffer, the glucan granules were no longer detectable by electron microscopy. Anaerobically, washed cells grown previously on fructose fermented this sugar to a mixture of lactic, acetic, and butyric acids, and little intracellular glucan was formed. Aerobically, the cells slowly metabolized fructose to acetate. Provision of glutamic acid as an additional energy (ATP) source elicited rapid synthesis of polymer by glycolyzing cells. Intracellular granules were not present in glutamate-grown cells, and under anaerobic conditions, the resting cells failed to metabolize [14C] fructose. However, the addition of glutamic acid to the suspension resulted in the rapid accumulation of sugar by the cells. Approximately 15% of the 14C-labeled material was extractable with boiling water, and by 31P nuclear magnetic resonance spectroscopy, this phosphorylated derivative was identified as [14C]fructose-1-phosphate. The nonextractable material represented [14C]glucan polymer. Fructose-1-phosphate kinase activity in fructose-grown cells was fivefold greater than that in glutamate-grown cells. We suggest that the activity of fructose-1-phosphate kinase and the availability of ATP regulate the flow of fructose into either the glycolytic or polymer-synthesizing pathway in F. nucleatum.
机译:核梭菌ATCC 10953厌氧生长的能量可以来自糖(果糖)或氨基酸(谷氨酸)的发酵。在果糖上生长期间,细胞形成大的细胞内颗粒,提取后通过酸或酶水解产生葡萄糖。内源性聚合物随后被代谢,并且在缓冲液中孵育细胞过夜后,电子显微镜无法再检测到葡聚糖颗粒。厌氧地,先前在果糖上生长的洗涤过的细胞将该糖发酵成乳酸,乙酸和丁酸的混合物,并且几乎没有形成细胞内葡聚糖。有氧运动中,细胞缓慢地将果糖代谢成乙酸盐。谷氨酸作为一种额外的能量(ATP)源的提供引发了糖基化细胞的快速合成。谷氨酸生长的细胞中不存在细胞内颗粒,在厌氧条件下,静止的细胞无法代谢[14C]果糖。然而,向悬浮液中添加谷氨酸导致细胞快速积累糖。 14 C标记的物质中约有15%可用沸水萃取,通过31P核磁共振波谱,该磷酸化衍生物被鉴定为[14C]果糖-1-磷酸。不可提取的物质代表[14 C]葡聚糖聚合物。在果糖生长的细胞中,果糖-1-磷酸激酶活性比在谷氨酸生长的细胞中高五倍。我们建议果糖-1-磷酸激酶的活性和ATP的可用性调节果糖流入核糖核酸中的糖酵解或聚合物合成途径。

著录项

  • 作者

    Robrish, S A; Thompson, J;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号