首页> 外文OA文献 >Multivariate Analysis of Complex DNA Sequence Electropherograms for High-Throughput Quantitative Analysis of Mixed Microbial Populations▿ †
【2h】

Multivariate Analysis of Complex DNA Sequence Electropherograms for High-Throughput Quantitative Analysis of Mixed Microbial Populations▿ †

机译:用于复杂微生物种群高通量定量分析的复杂DNA序列电泳图的多元分析▿†

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-throughput quantification of genetically coherent units (GCUs) is essential for deciphering population dynamics and species interactions within a community of microbes. Current techniques for microbial community analyses are, however, not suitable for this kind of high-throughput application. Here, we demonstrate the use of multivariate statistical analysis of complex DNA sequence electropherograms for the effective and accurate estimation of relative genotype abundance in cell samples from mixed microbial populations. The procedure is no more labor-intensive than standard automated DNA sequencing and provides a very effective means of quantitative data acquisition from experimental microbial communities. We present results with the Campylobacter jejuni strain-specific marker gene gltA, as well as the 16S rRNA gene, which is a universal marker across bacterial assemblages. The statistical models computed for these genes are applied to genetic data from two different experimental settings, namely, a chicken infection model and a multispecies anaerobic fermentation model, demonstrating collection of time series data from model bacterial communities. The method presented here is, however, applicable to any experimental scenario where the interest is quantification of GCUs in genetically heterogeneous DNA samples.
机译:高通量的遗传一致性单位(GCU)量化对于破译微生物群落中的种群动态和物种相互作用至关重要。但是,当前用于微生物群落分析的技术不适合这种高通量应用。在这里,我们演示了复杂DNA序列电泳图的多元统计分析用于有效和准确地估计来自混合微生物种群的细胞样品中相对基因型丰度的方法。该程序比标准的自动DNA测序更省力,并且提供了一种非常有效的从实验微生物群落中获取定量数据的方法。我们用空肠弯曲杆菌菌株特异性标记基因gltA以及16S rRNA基因(这是跨细菌集合体的通用标记)呈现结果。为这些基因计算的统计模型被应用于来自两个不同实验环境的遗传数据,即鸡感染模型和多物种厌氧发酵模型,证明了从模型细菌群落中收集了时间序列数据。但是,此处介绍的方法适用于任何实验场景,其中感兴趣的是定量遗传异质DNA样品中的GCU。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号