首页> 外文OA文献 >Life at the Energetic Edge: Kinetics of Circumneutral Iron Oxidation by Lithotrophic Iron-Oxidizing Bacteria Isolated from the Wetland-Plant Rhizosphere
【2h】

Life at the Energetic Edge: Kinetics of Circumneutral Iron Oxidation by Lithotrophic Iron-Oxidizing Bacteria Isolated from the Wetland-Plant Rhizosphere

机译:高能边沿的生命:从湿地植物根际分离的石化铁氧化细菌对周围中性铁氧化的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Batch cultures of a lithotrophic Fe(II)-oxidizing bacterium, strain BrT, isolated from the rhizosphere of a wetland plant, were grown in bioreactors and used to determine the significance of microbial Fe(II) oxidation at circumneutral pH and to identify abiotic variables that affect the partitioning between microbial oxidation and chemical oxidation. Strain BrT grew only in the presence of an Fe(II) source, with an average doubling time of 25 h. In one set of experiments, Fe(II) oxidation rates were measured before and after the cells were poisoned with sodium azide. These experiments indicated that strain BrT accounted for 18 to 53% of the total iron oxidation, and the average cellular growth yield was 0.70 g of CH2O per mol of Fe(II) oxidized. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fitted to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62% of the total oxidation. The total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18% compared to rates obtained with cell-free treatments. The results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and therefore influence other wetland biogeochemical cycles.
机译:从湿地植物根际分离出的岩石营养性Fe(II)氧化细菌BrT菌株的分批培养物在生物反应器中生长,并用于确定环境pH下微生物Fe(II)氧化的重要性并确定非生物变量影响微生物氧化和化学氧化之间的分配。 BrT菌株仅在Fe(II)源存在下生长,平均加倍时间为25 h。在一组实验中,在叠氮化钠中毒细胞之前和之后测量Fe(II)的氧化速率。这些实验表明,菌株BrT占总铁氧化的18%至53%,平均细胞生长产量为每mol氧化的Fe(II)0.70 g CH2O。在第二组实验中,将Fe(II)不断添加到接种了活细胞,杀死的细胞或无细胞的生物反应器中。拟合实验数据的统计模型表明,代谢Fe(II)氧化占总氧化的62%。在这些实验中,总Fe(II)的氧化速率受到Fe(II)输送至系统的速率的强烈限制,并且还受O2和总铁浓度的影响。此外,该模型表明微生物可能通过将Fe(II)结合到细菌外聚合物上来抑制非生物Fe(II)的氧化速率。与无细胞处理相比,BrT菌株的净效应是将总氧化速率提高了18%。结果表明,嗜中性Fe(II)氧化细菌可能会在根际竞争有限的O2,因此会影响其他湿地生物地球化学循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号